本研究提出了一种基于HPLC的茶叶黄酮苷类物质检测方法,采用此方法分析了西湖龙井茶中黄酮苷类物质在不同冲泡条件下的浸出特性,并通过Dot值(浓度与阈值的比值)分析黄酮苷类物质对茶汤滋味的影响。结果表明:(1)该检测方法可以较好地分离和测定茶叶中11种黄酮苷类物质;(2)传统冲泡条件下,西湖龙井茶中以杨梅素-3-O-半乳糖苷(Myr-gala)和槲皮素-3-O-芸香糖苷(Que-rut)为主,随着冲泡温度的提高和时间的延长,11种黄酮苷类物质除了山柰酚-3-O-芸香糖苷(Kae-rut)外,都呈不同程度的增加,其中槲皮素-3-O-芸香糖苷(Que-rut)和槲皮素-3-O-半乳糖苷(Que-gala)的浸出速率较快,而杨梅素-3-O-鼠李糖苷(Myr-rha)和牡荆素-2"-O-鼠李糖苷(Vit-rha)的浸出速率较慢;(3)通过Dot值分析,槲皮素-3-O-芸香糖苷(Que-rut)、槲皮素-3-O-半乳糖苷(Que-gala)和杨梅素-3-O-半乳糖苷(Myr-gala)的Dot值均高于10,可能是茶汤滋味的重要贡献物质。
The study proposed a standard analyzing method based on high performance liquid chromatography combined with ultraviolet (UV) to quantify extracting characteristics of flavone glycosides in Xihulongjing tea under different brewing conditions, and their contributions to taste was estimated by Dot factor (Dose-over-Threshold). Results indicated that: (1) This method can be used to separate and quantify eleven flavone and flavonol glycosides in tea; (2) In traditional brewing conditions, Myr-gala and Que-rut were the principal flavonol glycosides in Xihulongjing tea. With brewing temperature and time rising, eleven flavone and flavonol glycosides except Kae-rut increased variably with the raising of brewing temperature and the prolonging of brewing time, Que-rut and Que-gala leached fastly, while Myr-rha and Vit-rha leached slowly among 11 flavone and flavonol glycosides; (3)All of the Dot factors of Que-rut、Que-gala and Myr-gala were higher than 10. According to the definition of Dot factor, they may be showed a significant contributor to tea taste.
[1] 王辉, 龚淑英, 邵晓林, 等. 典型造型名优绿茶氨基酸浸出规律的研究[J]. 中国食品学报, 2009(4): 110-117.
[2] 张颖彬, 邵晓林, 龚淑英, 等. 典型造型名优绿茶茶多酚浸出规律的研究[J]. 茶叶, 2008(2): 89-94.
[3] 邵晓林, 龚淑英, 张月玲. 西湖龙井茶主要呈味物质浸出浓度与速率的研究[J]. 茶叶, 2006(2): 92-96.
[4] 李再兵. 绿茶主要品质成分的浸出动态及其与滋味感官评分的相关性研究[D]. 杭州: 浙江大学, 2002: 7-42.
[5] 龚淑英, 沈培和, 顾志蕾, 等. 名优绿茶冲泡水温及时间对感官品质的影响[J]. 茶叶科学, 1999, 19(1): 67-72.
[6] 李云飞. 绿茶主要化学物质与汤色劣变的相关性研究[D]. 合肥: 安徽农业大学, 2012: 13-25.
[7] 朱博, 夏涛, 高丽萍, 等. 绿茶茶汤中黄酮醇及其苷类的测定方法以及对茶汤色度的影响[J]. 食品与发酵工业, 2009(2): 146-150.
[8] Scharbert S, Holzmann N, Hofmann T.Identification of the Astringent Taste Compounds in Black Tea Infusions by Combining Instrumental Analysis and Human Bioresponse[J]. J Agric Food Chem, 2004, 52(11): 3498-3508.
[9] Scharbert S, Hofmann T.Molecular Definition of Black Tea Taste by Means of Quantitative Studies, Taste Reconstitution, and Omission Experiments[J]. J Agric Food Chem, 2005, 53(13): 5377-5384.
[10] 中华全国供销合作总社. GB/T 8305—2002 茶水浸出物测定[S], 2002.
[11] 中华全国供销合作总社. GB/T 8304—2002 茶水分测定[S], 2002.
[12] Wu C Y, Xu H R, Heritier J, et al. Determination of Catechins and Flavonol Glycosides in Chinese Tea Varieties[J]. Food Chemistry, 2012, 132(1): 144-149.
[13] 吴春燕, 须海荣, Héritier J, 等. 不同茶树品种中黄酮苷含量的测定[J]. 茶叶科学, 2012, 32(2): 122-128.
[14] 吴春燕. 不同茶树品种中黄酮苷含量的测定[D]. 杭州: 浙江大学, 2012: 14-26.
[15] 杨意成. 绿茶饮料苦涩味控制技术研究[D]. 杭州: 浙江大学, 2008: 14-19.
[16] Rostagno M A, Manchon N, D'Arrigo M, et al. Fast and Simultaneous Determination of Phenolic Compounds and Caffeine in Teas, Mate, Instant Coffee, Soft Drink and Energetic Drink by High-Performance Liquid Chromatography Using a Fused-Core Column[J]. Analyticachimicaacta, 2011, 685(2): 204-211.
[17] Yu P, Yeo A S, Low M Y, et al. Identifying Key Non-Volatile Compounds in Ready-to-Drink Green Tea and Their Impact on Taste Profile[J]. Food Chem, 2014, 155: 9-16.
[18] Luximon-Ramma A, Neergheen V S, Bahorun T, et al. Assessment of the Polyphenolic Composition of the Organic Extracts of Mauritian Black Teas: A Potential Contributor to Their Antioxidant Functions[J]. Biofactors, 2006, 27(1/2/3/4): 79-91.
[19] Dou J, Lee V S, Tzen J T, et al. Identification and Comparison of Phenolic Compounds in the Preparation of Oolong Tea Manufactured by Semifermentation and Drying Processes[J]. J Agric Food Chem, 2007, 55(18): 7462-7468.
[20] Lee V S, Dou J, Chen R J, et al. Massive Accumulation of Gallic Acid and Unique Occurrence of Myricetin, Quercetin, and Kaempferol in Preparing Old Oolong Tea[J]. J Agric Food Chem, 2008, 56(17): 7950-7956.
[21] 徐文平, 李大祥, 张正竹, 等. 绿茶几种化学组分苦涩味非线性回归分析及在感官审评中的应用[J]. 茶叶科学, 2010, 30(5): 399-406.