欢迎访问《茶叶科学》,今天是

茶多酚防治2型糖尿病的分子机理研究进展

  • 高媛圆 ,
  • 毛立民 ,
  • 徐平 ,
  • 王岳飞
展开
  • 1. 浙江大学茶学系,浙江 杭州 310058;
    2. 浙江省茶叶学会,浙江 杭州 310029
高媛圆,女,硕士研究生,主要从事茶天然产物与人体健康及其机理研究。

收稿日期: 2014-08-18

  修回日期: 2015-01-21

  网络出版日期: 2019-08-23

基金资助

广东省教育部产学研结合项目(2012B091100165)

Advances in Molecular Mechanisms of Tea Polyphenols in Preventing Type 2 Diabetes Mellitus

  • GAO Yuanyuan ,
  • MAO Limin ,
  • XU Ping ,
  • WANG Yuefei
Expand
  • 1. Department of Tea Science, Zhejiang Univerisity, Hangzhou 310058, China;
    2. Zhejiang Tea Science Society, Hangzhou 310029, China

Received date: 2014-08-18

  Revised date: 2015-01-21

  Online published: 2019-08-23

摘要

茶多酚作为天然功能性物质能有效防治2型糖尿病,但是其具体作用机制仍不太清楚。研究表明它的作用机理主要是通过调控糖代谢平衡:包括降低α-糖苷酶、α-淀粉酶等双糖酶活性,调控胰岛素信号传导途径及AMPK途径中多个分子靶点的磷酸化水平,影响酶与转录因子的活性与表达,减弱胰岛素抵抗及糖异生作用,促进胰岛素的合成与分泌,促进靶组织对葡萄糖的吸收与利用等;同时,茶多酚能够调控脂代谢,通过抑制脂质合成与积累的相关酶的活性及转录因子的表达,促进脂质的氧化代谢,减轻脂代谢紊乱;另外,茶多酚的抗氧化与抗炎作用可以有效减轻组织细胞的氧化伤害和炎症损伤,减少细胞凋亡。

本文引用格式

高媛圆 , 毛立民 , 徐平 , 王岳飞 . 茶多酚防治2型糖尿病的分子机理研究进展[J]. 茶叶科学, 2015 , 35(3) : 239 -247 . DOI: 10.13305/j.cnki.jts.2015.03.006

Abstract

As natural functional materials, tea polyphenols have been shown to effectively prevent the development of type 2 diabetes mellitus (T2DM), but the mechanism of action is still unclear. For further study, this article summarizes the molecular mechanisms implicated in the beneficial metabolic effects of tea polyphenols. In the respect of glycometabolism, tea polyphenols significantly reduce the absorption of simple sugars by inhibiting disaccharidases (α-amylase and α-glucosidase). Then, tea polyphenols can ameliorate insulin resistance and inhibit gluconeogenesis via insulin signaling and AMPK pathway, including regulation of the phosphorylation and expression of protein kinases, and relevant transcription factors. In addition, tea polyphenols stimulate glucose uptake and utilization by increasing insulin secretion. Meanwhile, tea polyphenols showed great effects on improving lipid metabolic disorder by suppressing lipid synthesis and accumulating the activity of related enzyme and the expression of transcription factors as well as stimulating the oxidative metabolism of fat and lipid and suppressing the lipidosis. Moreover, tea polyphenols showed antioxidative and anti-inflammatory capability to ameliorate cell damage and apoptosis induced by oxidation and inflammation.

参考文献

[1] Aguiree F, Brown A, Cho N H, et al. IDF Diabetes Atlas[J]. 2013(6): 11-14.
[2] 陈灏珠. 实用内科学[M]. 北京: 人民卫生出版社, 2003: 949-957.
[3] 万丽梅, 刘赫. 胰岛素抵抗的现代看法及分类探讨[J]. 实用糖尿病杂志, 2014(3): 4-6.
[4] 苑晓春. 茶叶生物化学[M]. 北京: 中国农业出版社, 2003: 9-15.
[5] 屠幼英. 茶与健康[M]. 西安: 世界图书出版西安有限公司, 2011: 121-132.
[6] Poitout V, Robertson R P.Glucolipotoxicity: fuel excess and β-cell dysfunction[J]. Endocrine Reviews, 2008, 29(3): 351-366.
[7] Kamiyama O, Sanae F, Ikeda K, et al. In vitro inhibition of α-glucosidases and glycogen phosphorylase by catechin gallates in green tea[J]. Food Chemistry, 2010, 122(4): 1061-1066.
[8] Oboh G, Ogunruku O O, Ogidiolu F O, et al. Interaction of some commercial teas with some carbohydrate metabolizing enzymes linked with type-2 diabetes: A dietary intervention in the prevention of type-2 diabetes[J]. Advances in preventive medicine, 2014, doi: 10.1155/2014/534082.
[9] Kong D, Wu J, Sun S, et al. A comparative study on antioxidant activity and inhibitory potential against key enzymes related to type 2 diabetes of four typical teas[J]. Journal of Food and Nutrition Research, 2014, 2(9): 652-658.
[10] Gao J, Xu P, Wang Y, et al. Combined effects of green tea extracts, green tea polyphenols or epigallocatechin gallate with acarbose on inhibition against α-amylase and α-glucosidase in vitro[J]. Molecules, 2013, 18(9): 11614-11623.
[11] Hara K, Ohara M, Hayashi I, et al. The green tea polyphenol (-)-epigallocatechin gallate precipitates salivary proteins including alpha-amylase: biochemical implications for oral health[J]. European Journal of Oral Sciences, 2012, 120(2): 132-139.
[12] Miao M, Jiang H, Jiang B, et al. Structure elucidation of catechins for modulation of starch digestion[J]. LWT-Food Science and Technology, 2014, 57(1): 188-193.
[13] Forester S C, Gu Y, Lambert J D.Inhibition of starch digestion by the green tea polyphenol,(-)-epigallocatechin- 3-gallate[J]. Molecular Nutrition & Food Research, 2012, 56(11): 1647-1654.
[14] Fei Q, Gao Y, Zhang X, et al. Effects of oolong tea polyphenols, EGCG, and EGCG 3″Me on pancreatic α-amylase activity in vitro[J]. Journal of Agricultural and Food Chemistry, 2014, 62(39): 9507-9514.
[15] Honda M, Hara Y.Inhibition of rat small intestinal sucrase and α-glucosidase activities by tea polyphenols[J]. Bioscience, Biotechnology, and Biochemistry, 1993, 57(1): 123-124.
[16] Matsui T, Tanaka T, Tamura S, et al. α-Glucosidase inhibitory profile of catechins and theaflavins[J]. Journal of Agricultural and Food Fhemistry, 2007, 55(1): 99-105.
[17] Tadera K, Minami Y, Takamatsu K, et al. Inhibition of. ALPHA.-Glucosidase and. ALPHA.-Amylase by Flavonoids[J]. Journal of Nutritional Science and Vitaminology, 2006, 52(2): 149-153.
[18] Kobayashi Y, Suzuki M, Satsu H, et al. Green tea polyphenols inhibit the sodium-dependent glucose transporter of intestinal epithelial cells by a competitive mechanism[J]. Journal of Agricultural and Food Chemistry, 2000, 48(11): 5618-5623.
[19] Snoussi C, Ducroc R, Hamdaoui M H, et al. Green tea decoction improves glucose tolerance and reduces weight gain of rats fed normal and high-fat diet[J]. The Journal of Nutritional Biochemistry, 2014, 25(5): 557-564.
[20] Saltiel A R, Kahn C R.Insulin signalling and the regulation of glucose and lipid metabolism[J]. Nature, 2001, 414(6865): 799-806.
[21] Chang L, Chiang S H, Saltiel A R.Insulin signaling and the regulation of glucose transport[J]. Molecular Medicine, 2004, 10(7/8/9/10/11/12): 65.
[22] Bao S, Cao Y, Fan C, et al. Epigallocatechin gallate improves insulin signaling by decreasing toll-like receptor 4 (TLR4) activity in adipose tissues of high-fat diet rats[J]. Molecular Nutrition & Food Research, 2014, 58(4): 677-686.
[23] 王进, 沈剑敏, 黄华宇, 等. 茶多酚对胰岛素分泌和胰岛内钙离子浓度的影响[J]. 兰州大学学报: 医学版, 2010, 36(4): 44-47.
[24] Yuskavage J K.Epigallocatechin Gallate in the regulation of insulin secretion [D]. Virginia: Virginia Polytechnic Institute and State University, 2008: 31-38.
[25] Tang WP, Li SM, Liu Y, et al. Anti-diabetic activity of chemically profiled green tea and black tea extracts in a type 2 diabetes mice model via different mechanisms[J]. Journal of Functional Foods, 2013, 5(4): 1784-1793.
[26] 唐伟, 朱剑, 武晓泓, 等. 胰岛素信号传导及其调节机制[J]. 实用糖尿病杂志, 2005, 1(3): 43-49.
[27] Li Y, Zhao S, Zhang W, et al. Epigallocatechin-3-O-gallate (EGCG) attenuates FFAs-induced peripheral insulin resistance through AMPK pathway and insulin signaling pathway in vivo[J]. Diabetes Research and Clinical Practice, 2011, 93(2): 205-214.
[28] Zhang Z F, Li Q, Liang J, et al. Epigallocatechin- 3-O-gallate (EGCG) protects the insulin sensitivity in rat L6 muscle cells exposed to dexamethasone condition[J]. Phytomedicine, 2010, 17(1): 14-18.
[29] Lin C L, Lin J K.Epigallocatechin gallate (EGCG) attenuates high glucose-induced insulin signaling blockade in human hepG2 hepatoma cells[J]. Molecular Nutrition & Food Research, 2008, 52(8): 930-939.
[30] Cai E P, Lin J K.Epigallocatechin gallate (EGCG) and rutin suppress the glucotoxicity through activating IRS2 and AMPK signaling in rat pancreatic β cells[J]. Journal of Agricultural and Food Chemistry, 2009, 57(20): 9817-9827.
[31] Ma J, Li Z, Xing S, et al. Tea contains potent inhibitors of tyrosine phosphatase PTP1B[J]. Biochemical and Biophysical Research Communications, 2011, 407(1): 98-102.
[32] Goldstein B J, Bittner-Kowalczyk A, White M F, et al. Tyrosine dephosphorylation and deactivation of insulin receptor substrate-1 by protein-tyrosine phosphatase 1B Possible facilitation by the formation of a ternary complex with the Grb2 adaptor protein[J]. Journal of Biological Chemistry, 2000, 275(6): 4283-4289.
[33] 张研, 袁莉, 唐兆生. 高糖毒性通过JNK信号通路对胰岛β细胞系INS-1细胞活性和凋亡的影响[J]. 中国病理生理杂志, 2010, 26(4): 755-759.
[34] Jung K H, Choi H S, Kim D H, et al. Epigallocatechin gallate stimulates glucose uptake through the phosphatidylinositol 3-kinase-mediated pathway in L6 rat skeletal muscle cells[J]. Journal of Medicinal Food, 2008, 11(3): 429-434.
[35] Jang H J, Ridgeway S D, Kim J.Effects of the green tea polyphenol epigallocatechin-3-gallate on high-fat diet-induced insulin resistance and endothelial dysfunction[J]. American Journal of Physiology-Endocrinology and Metabolism, 2013, 305(12): 1444-1451.
[36] Ueda M, Nishiumi S, Nagayasu H, et al. Epigallocatechin gallate promotes GLUT4 translocation in skeletal muscle[J]. Biochemical and Biophysical Research Communications, 2008, 377(1): 286-290.
[37] Ueda M, Furuyashiki T, Yamada K, et al. Tea catechins modulate the glucose transport system in 3T3-L1 adipocytes[J]. Food & Function, 2010, 1(2): 167-173.
[38] Qiu J, Maekawa K, Kitamura Y, et al. Stimulation of glucose uptake by theasinensins through the AMP-activated protein kinase pathway in rat skeletal muscle cells[J]. Biochemical Pharmacology, 2014, 87(2): 344-351.
[39] 黄宁, 李文佳, 安利国, 等. FoxO1的功能及其与人类疾病的关系[J]. 生命科学, 2012, 24(4): 334-339.
[40] 张艳萍, 李继安. 中药治疗2型糖尿病胰岛素抵抗的分子机制研究进展[J]. 华北煤炭医学院学报, 2011, 13(4): 477-479.
[41] Anton S, Melville L, Rena G.Epigallocatechin gallate (EGCG) mimics insulin action on the transcription factor FOXO1a and elicits cellular responses in the presence and absence of insulin[J]. Cellular Signalling, 2007, 19(2): 378-383.
[42] Cameron A R, Anton S, Melville L, et al. Black tea polyphenols mimic insulin/insulin-like growth factor-1 signalling to the longevity factor FOXO1a[J]. Aging Cell, 2008, 7(1): 69-77.
[43] Towler M C, Hardie D G.AMP-activated protein kinase in metabolic control and insulin signaling[J]. Circulation Research, 2007, 100(3): 328-341.
[44] Koyama Y, Abe K, Sano Y, et al. Effects of green tea on gene expression of hepatic gluconeogenic enzymes in vivo[J]. Planta Medica, 2004, 70(11): 1100-1102.
[45] Collins Q F, Liu H Y, Pi J, et al. Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, suppresses hepatic gluconeogenesis through 5′-AMP-activated protein kinase[J]. Journal of Biological Chemistry, 2007, 282(41): 30143-30149.
[46] Lee H, Bae S, Yoon Y.The anti-adipogenic effects of (-) epigallocatechin gallate are dependent on the WNT/β-catenin pathway[J]. The Journal of Nutritional Biochemistry, 2013, 24(7): 1232-1240.
[47] Kim K B.Anti-obesity effect of EGCG and glucosamine-6-phosphate through decreased expression of genes related to adipogenesis and cell cycle arrest in 3T3-L1 adipocytes[J]. Journal of Nutrition and Health, 2014, 47(1): 1-11.
[48] Kim H, Hiraishi A, Tsuchiya K, et al. (-) Epigallocatechin gallate suppresses the differentiation of 3T3-L1 preadipocytes through transcription factors FoxO1 and SREBP1c[J]. Cytotechnology, 2010, 62(3): 245-255.
[49] Zhang B B, Zhou G, Li C.AMPK: an emerging drug target for diabetes and the metabolic syndrome[J]. Cell Metabolism, 2009, 9(5): 407-416.
[50] Murase T, Misawa K, Haramizu S, et al. Catechin-induced activation of the LKB1/AMP-activated protein kinase pathway[J]. Biochemical Pharmacology, 2009, 78(1): 78-84.
[51] Wang X, Tian W.Green tea epigallocatechin gallate: a natural inhibitor of fatty-acid synthase[J]. Biochemical and Biophysical Research Communications, 2001, 288(5): 1200-1206.
[52] Du Y T, Wang X, Wu X D, et al. Keemun black tea extract contains potent fatty acid synthase inhibitors and reduces food intake and body weight of rats via oral administration[J]. Journal of Enzyme Inhibition and Medicinal Chemistry, 2005, 20(4): 349-356.
[53] Lin C L, Huang H C, Lin J K.Theaflavins attenuate hepatic lipid accumulation through activating AMPK in human HepG2 cells[J]. Journal of Lipid Research, 2007, 48(11): 2334-2343.
[54] Mochizuki M, Hasegawa N.Effects of green tea catechin-induced lipolysis on cytosol glycerol content in differentiated 3T3-L1 cells[J]. Phytotherapy Research, 2004, 18(11): 945-946.
[55] Sae-tan S, Grove K A, Kennett M J, et al. (-)-Epigallocatechin-3-gallate increases the expression of genes related to fat oxidation in the skeletal muscle of high fat-fed mice [J]. Food & Function, 2011, 2(2): 111-116.
[56] 陈继英, 郭嘉林, 张存彦, 等. 茶多酚的研究进展[J]. 中草药, 2004, 35(10): 133-135.
[57] 孙权, 尹学哲, 全吉淑, 等. 茶多酚对糖尿病大鼠的抗氧化作用[J]. 食品研究与开发, 2007(6): 9-11.
[58] 胡秀芳, 毛建妹, 蒋丽萍, 等. 茶多酚与其他抗氧化剂的协同作用[J]. 茶叶, 2000, 26(2): 66-69.
[59] Liu J, Tang Y, Feng Z, et al. (-)-Epigallocatechin-3-gallate attenuated myocardial mitochondrial dysfunction and autophagy in diabetic Goto-Kakizaki (GK) rats[J]. Free radical research, 2014, 48(8): 898-906.
[60] 唐华荣, 温武军, 杨桂文. EGCG抗炎及抗肿瘤活性的相关性[J]. 科技信息, 2010(36): 494.
[61] Lee S J, Kang H W, Lee S Y, et al. Green tea polyphenol epigallocatechin-3-O-gallate attenuates lipopolysaccharide- induced nitric oxide production in RAW264. 7 Cells[J]. Journal of Food and Nutrition Research, 2014, 2(7): 425-428.
[62] 张东芳, 肖鹏, 韩晨露, 等. 表没食子儿茶素-3-没食子酸酯抑制脂多糖诱导的巨噬细胞促炎因子TNF-α和IL-1β基因表达[J]. 中国生物化学与分子生物学报, 2014, 30(4): 402-408.
[63] 利基林, 沈筱芸, 易海, 等. EGCG对体外诱导小鼠Th17细胞的产生及促炎因子调控的影响[J]. 国际检验医学杂志, 2011, 32(15): 1668-1669, 1672.
[64] Pullikotil P, Chen H, Muniyappa R, et al. Epigallocatechin gallate induces expression of heme oxygenase-1 in endothelial cells via p38 MAPK and Nrf-2 that suppresses proinflammatory actions of TNF-α[J]. The Journal of Nutritional Biochemistry, 2012, 23(9): 1134-1145.
[65] Bae J Y, Choi J S, Choi Y J, et al. (-) Epigallocatechin gallate hampers collagen destruction and collagenase activation in ultraviolet-B-irradiated human dermal fibroblasts: Involvement of mitogen-activated protein kinase[J]. Food and Chemical Toxicology, 2008, 46(4): 1298-1307.
[66] Hisanaga A, Ishida H, Sakao K, et al. Anti-inflammatory activity and molecular mechanism of Oolong tea theasinensin[J]. Food & Function, 2014(5): 1891-1897.
[67] Zhang Z, Ding Y, Dai X, et al. Epigallocatechin-3-gallate protects pro-inflammatory cytokine induced injuries in insulin-producing cells through the mitochondrial pathway[J]. European Journal of Pharmacology, 2011, 670(1): 311-316.
[68] Satoh T, Igarashi M, Yamada S, et al. Inhibitory effect of black tea and its combination with acarbose on small intestinal α-glucosidase activity[J]. Journal of Ethnopharmacology, 2015,161: 147-155.
文章导航

/