欢迎访问《茶叶科学》,今天是

产多酚氧化酶茶树内生真菌的筛选及产酶条件优化

  • 张婉蓉 ,
  • 巫婷玉 ,
  • 杨民和
展开
  • 1. 福建师范大学生命科学学院,福建 福州 350108;
    2. 工业微生物教育部工程研究中心 福建师范大学,福建 福州 350108
张婉蓉,女,硕士研究生,主要从事茶叶内生真菌研究。

收稿日期: 2014-10-29

  修回日期: 2015-02-10

  网络出版日期: 2019-08-23

基金资助

福建省科技厅重点项目(No. 2012N0013)、福建省自然科学基金项目(No. 2012J01122)

Screening and Culture Medium Optimization of Polyphenol Oxidase Producing-Fungi from Endophytes of Tea Plant (Camellia sinensis)

  • ZHANG Wanrong ,
  • WU Tingyu ,
  • YANG Minhe
Expand
  • 1. College of Life Science, Fujian Normal University, Fuzhou 350108, China;
    2. Engineering Research Center of Industrial Microbiology Affiliated to Ministry of Education, Fujian Normal University, Fuzhou 350108, China

Received date: 2014-10-29

  Revised date: 2015-02-10

  Online published: 2019-08-23

摘要

以愈创木酚、α-萘酚、没食子酸、L-酪氨酸和单宁酸等5种酚类物质为底物,采用鉴别培养基筛选法从14株茶树内生真菌中初筛获得4株产多酚氧化酶的真菌。根据变色圈的大小、颜色深浅和摇瓶发酵的结果复筛获得产多酚氧化酶能力较强的菌株CSN-13。对菌株CSN-13产酶营养条件进行初步分析,结果表明,在供试的6种碳源物质中,以麸皮对菌株CSN-13产多酚氧化酶的促进作用最为明显;供试的5种氮源物质中,以硝酸铵的促进作用最为明显;在发酵培养基中添加茶水,对产酶有明显的促进作用。采用正交设计对CSN-13产酶发酵培养基进行初步优化,优化后的培养基配方为:麸皮(40βg·L-1)、硝酸铵(15βg·L-1)、茶水(4βg·L-1)、KH2PO4(2βg·L-1)、MgSO4·7H2O(0.5βg·L-1)、无水CaCl2(0.075βg·L-1)、CuSO4·5H2O(0.01βg·L-1)。采用优化后的培养基,菌株CSN-13在28℃下培养5βd,酶活力达到241βU·mL-1·min-1,比优化前提高8.5倍。茶树内生真菌菌株CSN-13及其发酵产酶培养基的研究为多酚氧化酶的进一步开发打下了基础。

本文引用格式

张婉蓉 , 巫婷玉 , 杨民和 . 产多酚氧化酶茶树内生真菌的筛选及产酶条件优化[J]. 茶叶科学, 2015 , 35(3) : 271 -280 . DOI: 10.13305/j.cnki.jts.2015.03.010

Abstract

Five kinds of phenolic materials, including guaiacol, alpha-naphthol, gallic acid, L-tyrosine and tannic acid, were used as the substrates to screen polyphenol oxidase-producing fungal strains. Four out of 14 endophytic fungal strains of tea plant (Camellia sinensis) were selected by agar plate screening methods. Strain CSN-13 was obtained for its color ring size and color depth, which owned a powerful production capacity of polyphenol oxidase. A preliminary analysis for nutritional components of strain CNS-13 was conducted. The results showed that among 6 kinds of carbon sources, wheat bran was the best for its promoting effects upon polyphenol oxidase production. Ammonium nitrate showed the most significant promotion among 5 kinds of nitrogen sources. Enzyme production was significantly promoted when tea infusion was added into the fermentation medium. With the adoption of orthogonal design, the fermentation medium for enzyme production was preliminarily optimized. The optimized medium contains wheat bran (40βg·L-1), ammonium nitrate (15βg·L-1), tea (4βg·L-1), KH2PO4 (2βg·L-1), MgSO4·7H2O (0.5βg·L-1), CaCl2 (0.075βg·L-1), and CuSO4·5H2O (0.01βg·L-1). By using the optimized medium, enzyme activity could reach 241 U·mL-1·min-1 under culture conditions with 28℃ temperature for 5 days, which was 8.5 times higher than that of before optimization. Strain CSN-13 and the fermentation medium in present study offered an alternative for the further development of polyphenol oxidase.

参考文献

[1] 杨贤强, 王岳飞. 茶多酚化学[M]. 上海: 上海科学技术出版社, 2003: 231-233.
[2] Lambert J D, Sang S M, Yang C S.Biotransformation of green tea polyphenols and the biological activities of those metabolites[J]. Molecular Pharmaceutics, 2007, 4(6): 819-825.
[3] 龚玉雷, 魏春, 王芝德, 等. 生物酶在茶叶提取加工技术中的应用研究[J]. 茶叶科学, 2013, 33(4): 311-321.
[4] 王乃栋. 茶多酚氧化酶基因的克隆及其工程菌的构建[D]. 济南: 山东农业大学, 2012: 7-9.
[5] Rivera-Hoyos G M, Morales-Alvarez E D, Poutou-Pinales R A, et al. Fungal laccases [J]. Fungal Biology Reviews, 2013, 27(2): 67-82.
[6] 宛晓春. 茶叶生物化学[M]. 北京: 中国农业出版社, 2003: 180-195.
[7] 刘仲华, 黄建安, 施兆鹏. 黑茶初制中主要酶类的变化[J]. 茶叶科学, 1991, 11(增刊): 17-22.
[8] 王志伟, 陈永敢, 王庆璨, 等. 中国植物内生微生物研究的发展和展望[J]. 微生物学通报, 2014, 41(3): 482-496.
[9] Choi Y W, Hodgkiss I J, Hyde K D.Enzyme production by endophytes of Brucea javanica[J]. Journal of Agricultural Technology, 2005, 1(1): 55-66.
[10] Suryanarayanan T S, Thirunavukkarasu N, Govindarajulu M B.Fungal endophytes: an untapped source of biocatalysts[J]. Fungal Diversity, 2012, 54(1): 19-30.
[11] Agusta A, Ohashi K, Shibuya H.Composition of the endophytic filamentous fungi isolated from the tea plant Camellia sinensis[J]. Journal of Natural Medicine, 2006, 60(2): 268-272.
[12] 谢丽华, 徐焰平, 王国红, 等. 茶树品种、叶片生育期和茶叶化学成分对内生真菌的影响[J]. 菌物研究, 4(3): 35-41.
[13] Agusta A, Ohashi K, Shibuya H.Bisanthraquinone metabolites produced by the endophytic fungus Diaporthe sp.[J]. Chemical and Pharmaceutical Bulletin, 2006, 54(4): 579-582.
[14] Zhang L, Zheng Z Z, Zhou Y B, et al. Chinese dark teas: postfermentation, chemistry and biological activities[J]. Food Research International, 2013, 53(1): 600-607.
[15] Qin J H, Li N, Tu P F, et al. Change in tea polyphenol and purine alkaoid composition during solid-state fungal fermentation of postfermented tea[J]. Agricultural Food Chemistry, 2012, 60(5): 1213-1217.
[16] Hong Y H, Jung E Y, Park Y, et al. Enzymatic improvement in the polyphenol extractability and antioxidant activity of green tea extracts[J]. Biosci Biotechnol Bioem, 2013, 77(1): 22-29.
[17] Wulandari R A, Amano M, Yanagita T, et al. New phenolic compounds from Camellia sinensis L. leaves fermented with Asperigillus sp.[J]. Journal of Natural Medicine, 2011, 65(3): 594-597.
[18] Gramss G, Gunther T H, Fritsche W.Spot tests for oxidative enzymes in ectomycorrhizal, wood and litter decaying fungi[J]. Mycological Research, 1998, 102(1): 67-72.
[19] 苏国成, 王剑锋, 周常义. 液态生产胞外漆酶大型真菌高产菌株筛选[J]. 生态学杂志, 2007, 26(8): 1210-1216.
[20] 吴旺宝, 邓泽涛, 邓国志. 一株产耐高温漆酶真菌的筛选[J]. 安徽大学学报, 2007, 32(2): 91-94.
[21] Kamal U Z, Abin M, Ayesha S A.Evaluation of tyrosinase producing endophytic fungi from Calotropis gigantea, Azadirachta indica, Ocimum tenuiflorum and Lantana camara[J]. Annual Review & Research in Biology. 2013, 3(4): 389-396.
[22] Sharma S, Bhat T, Dawra R.A spectrophotometric method for assay of tannse using rhodanine[J]. Analytical Biochemistry, 2000, 279(1): 85-89.
[23] Claudia A, Graciela E F, Rosana F.Total polyphenol content and antioxidant capacity of commercially available tea (Camellia sinensis) in Argentina[J]. Agricultural and food chemistry 2008, 56(19): 9225-9229.
[24] Pruidze G N, Mchedlishvili N I, Omiadze N T, et al. Multiple forms of phenol oxidase from Kolkhida tea leaves (Camellia Sinensis L.) and Mycelia Sterilia IBR 35219/2 and their role in tea production[J]. Food Research International, 2003, 36(6): 587-595.
[25] 周卫龙, 徐建峰, 陆小磊, 等. GB/T 8305—2013 茶水浸出物测定[S]. 北京: 中国标准出版社, 2014: 3-4.
[26] Sang S M, Lambert J D, Ho C T, et al. The chemistry and biotransformation of tea constituents[J]. Pharmacological Research, 2011, 62(2): 87-99.
[27] Omiadze N T, Mchedlishvili N I, Rodrigez-Lopez J N, et al. Biochemical processes at the stage of withering during black tea production[J]. Applied Biochemistry and Microbiology, 2014, 50(4): 394-397.
[28] Subramanian N, Venkatesh P, Ganguli S, et al. Role of polyphenol oxidase and peroxidase in the generation of black tea theaflavins[J]. Journal of Agricultural and Food Chemistry, 1999, 47(7): 2571-2578.
[29] 陈东生, 王坤波, 黄建安, 等. 茶树多酚氧化酶研究进展[J]. 茶叶通讯, 2012, 39(2): 17-22.
[30] Mohammad F G, Alireza T.Isolation and characterization of polyphenol oxidase- and peroxidase-producing Bacillus strains from fully fermented tea (Camellia sinensis)[J]. World Journal of Microbiology and Biotechnology, 2007, 23(9): 1327-1332.
[31] 殷亚峰, 丁玉庭. 茶汁中灵芝菌产多酚氧化酶发酵条件的研究[J]. 浙江工业大学学报, 2005, 33(4): 290-297.
[32] Itoh N, Katsube Y, Yamamoto K, et al. Laccase-catalyzed conversion of green tea catechins in the presence of gallic acid to epitheaflagallin and epitheaflagallin 3-O-gallate[J]. Tetrahedron, 2007, 63(38): 9488-9492.
[33] Sharma K, Shamsher S B, Harsh P S.Biotransformation of tea catechins into theaflavins with immobilized polyphenol oxidase[J]. Journal of Molecular Catalysis B: Enzymatic, 2009, 56(4): 253-258.
[34] Sun X, Gao L D, Hyde K D.Community composition of endophytic fungi in Acer truncatum and their role in decomposition[J]. Fungal Diversity, 2011, 47(1): 85-95.
[35] Zaidi K U, Mani A.Evaluation of tyrosinase producing endophytic fungi from Calotropis gigantea, Azadirachta indica, Ocimum tenuiflorum and Lantana camara[J]. Annual Review & Research in Biology, 2013, 3(4): 389-396.
[36] Mayer A M.Polyphenol oxidases in plants and fungi: Going places? A review[J]. Phytochemistry, 2006, 67(21): 2318-2331.
[37] Marusek C M, Trobaugh N M, Flurkey W H, et al. Comparative analysis of polyphenol oxidase from plant and fungal species[J]. Journal of Inorganic Biochemistry, 2006, 100(1): 108-123.
文章导航

/