欢迎访问《茶叶科学》,今天是

白鸡冠半同胞系(F1代)叶片主要性状及光合特征分析

  • 陈常颂 ,
  • 王峰 ,
  • 陈玉真 ,
  • 单睿阳 ,
  • 王秀萍 ,
  • 林郑和 ,
  • 钟秋生 ,
  • 陈志辉 ,
  • 余文权
展开
  • 福建省农业科学院茶叶研究所 国家茶树改良中心福建分中心,福建 福安 355015
陈常颂,男,硕士,副研究员,主要从事茶树资源筛选与新品种选育研究。

收稿日期: 2016-06-17

  网络出版日期: 2019-08-26

基金资助

国家茶叶产业技术体系(CARS-23)、省属公益类科研专项(2015R1101017-9)、福建省农业科学院茶叶科技创新团队、中国乌龙茶产业协同创新中心专项(闽教科〔2015〕75号)

Comparison of Leaf Functional and Photosynthetic Characteristics in Baijiguan Half-sib Teas

  • CHEN Changsong ,
  • WANG Feng ,
  • CHEN Yuzhen ,
  • SHAN Ruiyang ,
  • WANG Xiuping ,
  • LIN Zhenghe ,
  • ZHONG Qiusheng ,
  • CHEN Zhihui ,
  • YU Wenquan
Expand
  • Tea Research Institute, Fujian Academy of Agricultural Sciences, Fujian Branch of China National Center for Tea Improvement, Fu′an 355015, China

Received date: 2016-06-17

  Online published: 2019-08-26

摘要

以白鸡冠半同胞系F1代中25个新品系(11个黄白化新品系和14个绿叶新品系)为研究对象,观测茶树新梢生物量、生育期、叶片功能性状及光合性能,并分析两类茶树新品系之间的差异。结果表明:与母本白鸡冠相比,25个新品系新梢生物量均增加(15号和24号除外),增幅为25.0%~106.25%,一芽三叶期提前(早、中生种比例达84%);黄白化新品系叶片面积(LA)和比叶面积(SLA)明显增加,干物质含量(LDMC)则明显降低,其他指标变化不明显;绿叶新品系叶片面积(LA)和光合色素指标均明显增加,其他指标变化趋势不明显。此外,黄白化新品系叶片的LA和光合色素指标平均值显著低于绿叶新品系,而叶片的SLA、Chla/Chlb和Car/Chl比值平均值显著高于绿叶新品系。黄白化新品系叶绿素含量平均值仅为绿叶新品系的42.29%,但各项光合性能指标并未下降(只有3号和6号光合色素过低时显著下降),说明该黄白化新品系在一定叶绿素含量范围内,单位叶绿素的光合效率较高,可能是对叶绿素含量低的一种生理补偿,有待进一步从生理和分子方面深入研究。

本文引用格式

陈常颂 , 王峰 , 陈玉真 , 单睿阳 , 王秀萍 , 林郑和 , 钟秋生 , 陈志辉 , 余文权 . 白鸡冠半同胞系(F1代)叶片主要性状及光合特征分析[J]. 茶叶科学, 2016 , 36(5) : 452 -460 . DOI: 10.13305/j.cnki.jts.2016.05.002

Abstract

With 25 tea strains as experimental material (14 albino tea strains and 14 green tea strains), the spring shoot biomass, growth stages, leaf functional and photosynthetic characteristics of the leaves were monitored, compares with both between difference new tea strains. The results showed that: comparing with female parents (Baijiguan), the spring shoot biomass were increased by 25.0%-106.25% (except 15 and 24) and the growth stages were advanced (early middle growth was 84%) in 25 new tea strains. The leaf area (LA) and specific leaf area (SLA) were significantly higher in albino tea strains than Baijiguan, but the leaf dry matter content (LDMC) had significant decrease, other indicators had no difference. The leaf area (LA) and photosynthetic pigments were significantly increased in green tea strains than in Baijiguan, other indicators were not pronounced. The average of LA and photosynthetic pigments in albino tea strains were significantly below the green tea strains, but the SLA, ratio of chlorophyll a and b (Chla/Chlb) and ratio of carotene and chlorophyll (Car/Chl) were significantly higher than the

参考文献

[1] 王开荣, 梁月荣, 张龙杰, 等. 白化茶种质资源的分类及特性[J]. 中国茶叶, 2008, 30(8): 9-11.
[2] 叶乃兴. 白茶、白叶茶与白毛茶[J]. 福建茶叶, 2010, 32(10): 44-46.
[3] 成浩, 李素芳, 陈明, 等. 安吉白茶特异性状的生理生化本质[J]. 茶叶科学, 1999, 19(2): 87-92.
[4] Lin F, Gao M J, Hou R Y, et al.Determination of quality constituents in the young leaves of albino tea cultivars[J]. Food Chemistry, 2014, 155(11): 98-104.
[5] Lin F, Gao M J, Hou R Y, et al.Determination of quality constituents in the young leaves of albino tea cultivars[J]. Food Chemistry, 2014, 155(11): 98-104.
[6] Li N N, Deng L, Xiang L P, et al.Photoprotective Effect of Tea and its Extracts against Ultraviolet Radiation-Induced Skin Disorders[J]. Tropical Journal of Pharmaceutical Research, 2014, 13(3): 475-483.
[7] Wang K R, Li N N, Du Y Y, et al.Effect of sunlight shielding on leaf structure and amino acids concentration of light sensitive albino tea plant[J]. 2013, 12(36), 5535-5539.
[8] 邓婷婷, 吴扬, 李娟, 等. 茶树泛素活化酶基因全长cDNA克隆及序列分析[J]. 茶叶科学, 2012, 32(6): 500-508.
[9] Lu W, Cao H, Chen C, et al.Complementary transcriptomic and proteomic analyses of a chlorophyll-deficient tea plant cultivar reveal multiple metabolic pathway changes[J]. Journal of Proteomics, 2016, 130: 160-169.
[10] 马春雷, 姚明哲, 王新超, 等. 茶树叶绿素合成相关基因克隆及在白叶1号不同白化阶段的表达分析[J]. 作物学报, 2015, 41(2): 240-250.
[11] Lu W, Yue C, Cao H, et al.Biochemical and transcriptome analyses of a novel chlorophyll-deficient chlorina tea plant cultivar[J]. Bmc Plant Biology, 2014, 14(1): 1-13.
[12] Qin L, Huang J, Liu S, et al.Proteomic analysis of young leaves at three developmental stages in an albino tea cultivar[J]. Proteome Science, 2011, 9(31): 1-12.
[13] Xiong L, Li J, Li Y, et al.Dynamic changes in catechin levels and catechin biosynthesis-related gene expression in albino tea plants (Camellia sinensis, L.)[J]. Plant Physiology Biochemistry, 2013, 71(71C): 132-143.
[14] 郭吉春. 茶树特早生种早春毫与黄叶特异种金冠茶的育成[G]. 2009: 16-22.
[15] 王峰, 陈玉真, 王秀萍, 等. 茶树不同叶位叶片功能性状与光合特性研究[J]. 茶叶科学, 2016, 36(1): 77-84.
[16] Arnon D I.Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris[J]. Plant physiology, 1949, 24(1): 1-15.
[17] 王开荣, 韩震, 梁月荣, 等. 黄色白化茶树新品种“御金香”选育研究[J]. 中国茶叶, 2013, 35(6): 24-25.
[18] 洪永聪, 卢莉, 辛伟, 等. 武夷岩茶“十大名丛”种质生物学特性的鉴定与评价[J]. 中国农学通报, 2012, 28(28): 234-238.
[19] Robson T M, Sánchez-Gómez D, Cano F J, et al.Variation in functional leaf traits among beech provenances during a Spanish summer reflects the differences in their origin[J]. Tree genetics genomes, 2012, 8(5): 1111-1121.
[20] 蒋会兵, 宋维希, 矣兵, 等. 云南茶树种质资源的表型遗传多样性[J]. 作物学报, 2013, 39(11): 2000-2008.
[21] 郭春芳, 孙云, 陈常颂, 等. 茶树品种光合与水分利用特性比较及聚类分析[J]. 作物学报, 2008, 34(10): 1797-1804.
[22] 王桔红, 马瑞君, 庄东红. 粤东30种凤凰单枞茶树品系叶片性状变异研究[J]. 广东农业科学, 2014, 41(11): 25-28.
[23] 王宝山. 植物生理学[M]. 2版. 北京: 科学出版社, 2007: 13.
[24] Fu P L, Jiang Y J, Wang A Y, et al.Stem hydraulic traits and leaf water-stress tolerance are coordinated with the leaf phenology of angiosperm trees in an Asian tropical dry karst forest[J]. Annals of botany, 2012, 110(1): 189-199.
[25] Wyka T P, Oleksyn J, Żytkowiak R, et al.Responses of leaf structure and photosynthetic properties to intra-canopy light gradients: a common garden test with four broadleaf deciduous angiosperm and seven evergreen conifer tree species[J]. Oecologia, 2012, 170(1): 11-24.
[26] 冯花. 闽北茶区不同乌龙茶品种叶片显微结构的对比研究[D]. 福州: 福建农林大学, 2010: 35-39.
[27] Osnas J L D, Lichstein J W, Reich P B, et al. Global leaf trait relationships: mass, area, and the leaf economics spectrum[J]. Science, 2013, 340(6133): 741-744.
[28] 于鸿莹, 陈莹婷, 许振柱, 等. 内蒙古荒漠草原植物叶片功能性状关系及其经济谱分析[J]. 植物生态学报, 2014, 38(10): 1029-1040.
[29] Shipley B. Trade-offs between net assimilation rate and specific leaf area in determining relative growth rate: relationship with daily irradiance [J]. Functional Ecology, 2002, 682-689(5): 682-689.
[30] 冯琳. 茶树黄化品种的品质化学及黄化机理的分析[D]. 合肥: 安徽农业大学, 2014: 13-14.
[31] 王彩霞, 田韦韦, 田敏, 等. 文心兰黄化突变体的初步研究[J]. 核农学报, 2013, 27(12): 1845-1852.
[32] Rosevear M J, Young A J, Johnson G N.Growth conditions are more important than species origin in determining leaf pigment content of British plant species[J]. Functional Ecology, 2001, 15(4): 474-480.
[33] 韩楠, 唐茜, 赖云松, 等. 四川引进的茶树特色品种黄金芽、金光、郁金香的光合特性[J]. 西南农业学报, 2015, 28(4): 1600-1605.
[34] 谭新星, 汤泽生. 叶绿素缺乏的大麦突变体的光合作用和叶绿素荧光[J]. 植物生理学报, 1996(1): 51-57.
[35] 曹莉, 王辉, 孙道杰, 等. 小麦黄化突变体光合作用及叶绿素荧光特性研究[J]. 西北植物学报, 2006, 26(10): 2083-2087.
[36] Feng Y L, Fu G L, Zheng Y L.Specific leaf area relates to the differences in leaf construction cost, nitrogen allocation and use efficiency between invasive and noninvasive congeners of two genera[J]. Planta, 2008, 228(3): 383-390.
文章导航

/