乌龙茶主要产于我国福建南部(闽南)、北部(闽北)及广东和台湾等地,不同产区乌龙茶具有独特的香气品质特征。本文选取不同产区有代表性的乌龙茶样品,采用专家感官审评和顶空固相微萃取法(HS-SPME)结合气相色谱与质谱联用技术(GC-MS),进行了香气感官品质审评和香气成分分析。研究结果表明,乌龙茶香气化合物主要包括醇类、酮类、醛类、酯类、碳氢化合物、酚类、含氮化合物等,但不同产区乌龙茶香气组成存在明显差异;反-橙花叔醇(40.96%)与α-法尼烯(20.00%)是台湾高山乌龙茶的主要香气成分;反-橙花叔醇(46.22%)、吲哚(15.20%)和α-法尼烯(23.01%)是闽南清香型铁观音的主要香气成分;反-橙花叔醇(13.51%)、芳樟醇及其氧化产物(11.87%)和紫罗酮类物质(5.26%)是闽北水仙的主要香气成分;而反-橙花叔醇(31.43%)和吲哚(35.83%)是广东乌叶单枞的主要香气成分。本文还分析比较了不同做青程度乌龙茶的香气成分,同时探讨了香气成分含量与乌龙茶香气品质间的关系。
Oolong teas are mainly produced in the south and north of Fujian, Guangdong and Taiwan, and they have unique aroma qualities in different producing districts. The sensory evaluation and HS-SPME/GC-MS were applied to analyze the aroma qualities and aroma components of typical Oolong teas from the four producing districts in this study. The results showed that, the main aroma components include alcohol, ketone, aldehyde, ester, hydrocarbon, phenols and nitrogenous compounds. However, the aroma components of the Oolong teas from different districts showed large differences. Trans-nerolidol (40.96%) and α-farnesene (20.00%) were found as the major aroma components of high-mountain Oolong tea from Taiwan. While trans-nerolidol (46.22%), indole (15.20%) and α-farnesene (23.01%) were found as the major aroma components of fresh scent-flavor Tieguanyin from south of Fujian province. Linalool and its oxidates (11.87%), ionones (5.26%) and 3-hexenyl ester, (z)-hexanoic acid (5.05%) were the major aroma components of Shuixian from north of Fujian province, and trans-nerolidol (31.43%) and indole (35.83%) were found as the major aroma components of Wuye dancong from Guangdong province. The aroma
[1] 杨意成, 梁月荣. 乌龙茶花香形成机理的研究[J]. 茶叶, 2008, 34(1): 10-14.
[2] 刘洋, 胡军, 李海民, 等. 乌龙茶香气成分研究进展[J]. 安徽农业科学, 2009, 37(33): 16333-16336.
[3] 吕世懂, 吴远双, 姜玉芳, 等. 不同产区乌龙茶香气特征及差异分析[J]. 食品科学, 2014, 35(2): 146-153.
[4] 叶国柱, 袁海波, 江用文, 等. Bayes逐步判别法在绿茶板栗香化学识别上的应用[J]. 茶叶科学, 2009, 29(1): 27-33.
[5] 王秋霜, 陈栋, 许勇泉, 等. 中国名优红茶香气成分的比较研究[J]. 中国食品学报, 2013, 13(1): 195-200.
[6] Lv HP, Zhong QS, Lin Z, et al.Aroma characterisation of Pu-erh tea using headspace-solid phase microextraction combined with GC/MS and GC-olfactometry[J]. Food Chemistry, 2012, 130(4): 1074-1081.
[7] 中国国家标准化管理委员会. GB/T 23776—2009 茶叶感官审评方法[B]. 北京: 中国标准出版社, 2009.
[8] Rawat R, Gulati A, Kiran Babu GD, et al.Characterization of volatile components of Kangra orthodox black tea by gas chromatography-mass spectrometry[J]. Food Chemistry, 2007, 105(1): 229-235.
[9] Arthur CL, Pawliszyn J.Solid phase microextraction with thermal desorption using fused silica optical fibers[J]. Analytical Chemistry, 1990, 62(19): 2145-2148.
[10] Ho CW, Wan Aida WM, Maskat MY, et al.Optimization of headspace solid phase microextraction (HS-SPME) for gas chromatography mass spectrometry (GC-MS) analysis of aroma compound in palm sugar (Arenga pinnata)[J]. Journal of Food Composition and Analysis, 2006, 19(8): 822-830.
[11] 陈林, 陈健, 张应根, 等. 清香型乌龙茶品质形成过程中香气组成化学模式的动态变化规律[J]. 茶叶科学, 2013, 33(1): 53-59.
[12] 周玲. 乌龙茶香气挥发性成分及其感官性质分析[D]. 重庆: 西南大学, 2006: 17-35.
[13] 戴素贤, 谢赤军, 陈栋, 等. 七种高香型乌龙茶香气成分的主成分分析[J]. 华南农业大学学报, 1999, 20(1): 113-117.
[14] 黄福平, 陈荣冰, 梁月荣, 等. 乌龙茶做青过程中香气组成的动态变化及其与品质的关系[J]. 茶叶科学, 2003, 23(1): 31-37.
[15] 戴素贤, 谢赤军, 陈栋, 等. 岭头单枞乌龙茶香气及化学组成特征[J]. 茶叶科学, 1997, 17(2): 213-218.
[16] 钟秋生, 林郑和, 陈常颂, 等. 烘焙温度对九龙袍品种乌龙茶生化品质的影响[J]. 茶叶科学, 2014, 34(1): 9-20.
[17] 周雪芳. 焙火对乌龙茶挥发性化合物的影响[D]. 重庆: 西南大学, 2013:.
[18] 苗爱清, 凌彩金, 庞式, 等. 金萱乌龙茶香气成分的分析研究[J]. 广东农业科学, 2007, 34(9): 82-83.
[19] 钟秋生, 吕海鹏, 林智, 等. 东方美人茶和铁观音香气成分的比较研究[J]. 食品科学, 2009, 30(8): 182-186.
[20] Wang L F, Lee J Y, Chung J O, et al.Discrimination of teas with different degrees of fermentation by SPME-GC analysis of the characteristic volatile flavour compounds[J]. Food Chemistry, 2008, 109(1): 196-206.