土壤是茶树生存的基本条件,它与茶树生长发育和茶叶品质形成关系十分密切。以现代茶园(或小茶林)土壤和茶叶为对照,对云南景迈山、布朗山和南糯山古茶园土壤(0~20βcm)的pH值、阳离子交换量(CEC)、有机质(SOM)、氮磷钾(NPK)养分和一芽二叶晒青绿茶的水浸出物、茶多酚、氨基酸、咖啡碱及7种多酚类单体含量进行了测定分析。结果表明,古茶园土壤含水率与现代茶园相比提高了15.23%~46.82%,布朗山和南糯山古茶园的土壤pH值高于现代茶园(或小茶林),古茶园土壤的CEC、SOM、总氮(TN)、总磷(TP)和有效磷(Olsen-P)含量均显著高于现代茶园(或小茶林);各茶山古茶园和现代台地茶园(或小茶林)茶叶的水浸出物、氨基酸、茶多酚及多酚类单体物质含量虽然不一致,但古茶树茶叶酚氨比为6.75~12.28,明显低于现代茶园茶叶的9.98~15.25;各茶园茶叶中5种儿茶素含量的高低依次为:ECG>EGCG>EC>EGC>C,并且古茶园和现代茶园(或小茶林)茶叶的ECG和EGCG含量差异不显著;此外,仅在古茶树茶叶中检测到没食子酸(GA)。古茶园栽培模式有利于防止茶园土壤酸化、降低茶园光照强度、提高茶园土壤含水率、促进茶园土壤肥力的可持续利用,有利于茶叶高氨基酸含量和低酚氨比的形成。
Soil is the basic survival condition of the tea plant, so it was very closely related to the growth and development of tea plant and tea quality. The representative ancient tea arboretum and modern tea garden were selected in Jingmai, Bulang and Nannuo ancient tea mountain of Yunnan Province. The pH value, cation exchange capacity (CEC), soil organic matter (SOM), and nutrients content of nitrogen, phosphorus and potassium (NPK) in tea garden soils (0-20βcm) and the tea main quality component of sundried green teas which were manufactured by a bud and two leaves (water extraction, tea polyphenols, amino acid, caffeine and polyphenols monomer content) were determined from the soil and tea samples and those from the modern tea garden (or young tea tree/forest) were used as control. The results showed that the soil moisture content increased by 15.23%~46.82% in ancient tea garden under forests shade in comparing with that from modern tea garden. The soil pH value in the ancient tea garden was higher than that of modern tea garden (or young tea tree/forest) in Bulang mountains and Nannuo mountain. The soil CEC, SOM, total nitrogen (TN), total phosphorus (TP) and available phosphorus (Olsen-P) contents of ancient tea garden were significantly higher than those of modern tea garden (or young tea tree/forest). All though the contents of tea water extract, amino acid, tea polyphenol and polyphenols monomer substance in all tea gardens were not consistent, however, the ratio of polyphenol to amino acid of ancient tea plants planted under forests range was 6.75 to 12.28 significantly lower than those of the modern tea garden (from 9.98 to 15.25). The changes of five kinds of catechins content were in the order: Epicatechin gallate (ECG) > Epigallocatechin gallate (EGCG) > Epicatechin (EC) > Epigallocatechin (EGC) > Catechin (C), and the ECG and EGCG contents were not significant differed between ancient tea garden and modern tea garden (or young tea tree/forest). Moreover, tea gallic acid (GA) was detected only in the ancient tea plants. The cultivation pattern in ancient tea garden was beneficial to prevent the soil acidification, to reduce the illumination intensity, to improve the soil moisture content, and to promote the sustainable utilization soil fertility in tea garden, and it is advantageous to tea plant in forming high amino acid content and low ratio of polyphenol to amino acid.
[1] 邓西海, 蒋其鳌, 周凌云. 世界主要优质红茶化学成分与产地环境研究[J]. 土壤, 2008, 40(4): 672-675.
[2] 赵仁全, 黄艳红, 李琳. 土壤pH值对茶树生长和茶叶品质影响的研究进展[J]. 农技服务, 2012, 29(3): 295-296.
[3] 韩文炎, 阮建云, 林智, 等. 茶园土壤主要营养障碍因子及系列茶园专用肥的研制[J]. 茶叶科学, 2002, 22(1): 70-74.
[4] 俞慎, 何振立, 陈国潮, 等. 不同树龄茶树根层土壤化学特性及其对微生物区系和数量的影响[J]. 土壤学报, 2003, 40(3): 433-439.
[5] 薛冬, 姚槐应, 黄昌勇. 不同利用年限茶园土壤矿化、硝化作用特性[J]. 土壤学报, 2007, 44(2): 374-378.
[6] 徐仁扣, 赵安珍, 姜军. 酸化对茶园黄棕壤CEC和粘土矿物组成的影响[J]. 生态环境学报, 2011, 20(10): 1395-1398.
[7] 苏有健, 王烨军, 张永利, 等. 不同植茶年限茶园土壤pH缓冲容量[J]. 应用生态学报, 2014, 25(10): 2914-2918.
[8] 许玫, 王平盛, 唐一春, 等. 中国云南古茶树群落的分布和多样性[J]. 西南农业学报, 2006, 19(1): 123-126.
[9] 何露, 闵庆文, 袁正. 澜沧江中下游古茶树资源、价值及农业文化遗产特征[J]. 资源科学, 2011, 33(6): 1060-1065.
[10] 罗向前, 李思颖, 王家金, 等. 西双版纳古茶树资源调查[J]. 西南农业学报, 2013, 26(1): 46-51.
[11] 姜虹, 沙丽清. 云南澜沧县景迈古茶园土壤养分和土壤酶活性研究[J]. 茶叶科学, 2008, 28(3): 214-220.
[12] 梁名志, 李友勇, 马伟, 等. 云南古茶园土壤化学成分研究[J].西南农业学报, 2010, 23(1): 119-122.
[13] 李友勇, 王家金, 孙雪梅, 等. 云南景迈山和六大茶山古茶园土壤养分分析[J]. 中国农学通报, 2013, 29(13): 201-206.
[14] 牛素贞, 宋勤飞, 樊卫国. 黔西南州古茶树立地土壤养分分析[J].浙江农业学报, 2013, 25(6): 1348-1353.
[15] 鲍晓华, 董玄, 潘思轶. 野生古茶树茶与茶园茶的比较研究[J]. 浙江农业学报, 2012, 24(4): 603-608.
[16] 鲍士旦. 土壤农化分析[M]. 第3版. 北京: 中国农业出版社, 2005: 30-86, 106-163.
[17] 杨冬雪, 钟珍梅, 陈剑侠, 等. 福建省茶园土壤养分状况评价[J]. 海峡科学, 2010, 42(6): 129-131.
[18] 齐丹卉, 郭辉军, 崔景云, 等. 云南澜沧县景迈古茶园生态系统植物多样性评价[J]. 生物多样性, 2005, 13(3): 221-231.
[19] Po-Yi Hung.Tea forest in the making: Tea production and the ambiguity of modernity on China’s southwest frontier[J]. Geoforum, 2013, 47: 178-188.
[20] 张一平, 刘洋. 云南古茶园与常规茶园小气候特征比较研究[J]. 华南农业大学学报, 2005, 26(2): 18-21.
[21] Tachibana N, Yoshikawa S, Ikeda K.Influences of heavy application of nitrogen on soil acidification and root growth in tea fields[J]. Japanese Journal of Crop Science, 1995, 64: 516-522.
[22] 廖万有. 我国茶园土壤的酸化及其防治[J]. 农业环境保护, 1998, 17(4): 178-180.
[23] 张倩, 宗良纲, 曹丹, 等. 江苏省典型茶园土壤酸化趋势及其制约因素研究[J]. 土壤, 2011, 43(5): 751-757.
[24] Pandey A, Paini L M S. The rhizosphere effect of tea on soil microbes in a Himalayan monsoonal location[J]. Biology and Fertility of Soils, 1996, 21: 131-137.
[25] 杨亚军. 品种间茶多酚含量差异及其与茶叶品质关系的探讨[J]. 中国茶叶, 1989, 11(5): 8-10.
[26] R Song, D Kelman, KL Johns, et al. Correlation between leaf age, shade levels, and characteristic beneficial natural constituents of tea (Camellia sinensis) grown in Hawaii[J]. Food Chemistry, 2012, 133(3): 707-714.
[27] 巩雪峰, 余有本, 肖斌, 等. 不同栽培模式对茶园生态环境及茶叶品质的影响[J]. 西北植物学报, 2008, 28(12): 2485-2491.
[28] 王玉花, 秦志敏, 肖润林, 等. 遮光水平对丘陵茶园茶叶生长指标和品质的影响[J]. 经济林研究, 2011, 29(2): 48-53.
[29] 陆建良. 光促茶多酚积累与茶树进化[J]. 茶叶, 1996, 22(1): 20-22.
[30] Jia-Hua Li, Atsushi Nesumi, Keiichi Shimizu, et al.Chemosystematics of tea trees based on tea leaf polyphenols as phenetic markers[J]. Phytochemistry, 2010, 71: 1342-1349.
[31] 张颖君, 杨崇仁, 曾恕芬, 等. 白莺山古茶的化学成分分析与栽培茶树的起源[J]. 云南植物研究, 2010, 32(1) : 77-82.
[32] 陈继伟, 梁名志, 王立波, 等. 古茶园与台地茶园鲜叶常量成分及成茶品质比较研究[J]. 中国农学通报, 2011, 27(4): 339-344.
[33] 陈玫, 夏丽飞, 梁名志, 等. 勐海古树茶与生态茶品质化学研究[J]. 福建茶叶, 2012(4): 12-15.
[34] 夏丽飞, 梁名志, 王丽, 等. 勐海晒青茶品质化学研究[J]. 中国农学通报, 2012, 28(16): 239-244.