欢迎访问《茶叶科学》,今天是

云南白莺山地区茶树遗传多样性研究

  • 毛娟 ,
  • 江鸿键 ,
  • 李崇兴 ,
  • 马建强 ,
  • 陈亮
展开
  • 1. 中国农业科学院茶叶研究所,农业部茶树生物学与资源利用重点实验室,浙江 杭州 310008;
    2. 云南省临沧市人民政府茶叶办公室,云南 临沧 677000;
    3. 云南省临沧市茶叶科学研究所,云南 临沧 677000
毛娟,女,硕士研究生,主要从事茶树资源育种研究。

收稿日期: 2017-04-05

  修回日期: 2017-08-15

  网络出版日期: 2019-08-28

基金资助

国家自然科学基金(No.31500568)、国家茶叶产业技术体系(CARS-023)、中国农业科学院科技创新工程

Genetic Diversity Analysis of Tea Plant in Baiyingshan Mountain of Yunnan

  • MAO Juan ,
  • JIANG Hongjian ,
  • LI Chongxing ,
  • MA Jianqiang ,
  • CHEN Liang
Expand
  • 1. Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China;
    2. Tea Administration Office of Lincang, Lincang 677000, China;
    3. Tea Research Institute of Lincang, Lincang 677000, China

Received date: 2017-04-05

  Revised date: 2017-08-15

  Online published: 2019-08-28

摘要

云南省云县白莺山地区是大理茶(Camellia taliensis)、阿萨姆茶(C. sinensis var. assamica)及中间过渡形态茶树广泛分布的区域。本研究利用30个SSR核心标记分析了130份白莺山地区茶树种质资源的遗传多样性,共检测到202个等位基因,平均每个位点的等位基因数(A)为6.73,期望杂合度(HE)为0.6135,近交系数(Fis)为–0.1745,多态信息含量(PIC)为0.5652,基因多样性(H)为0.6112。通过模拟不同样本数量,计算遗传多样性参数与样本量变化的回归曲线,发现样本量在40个时,能较好地反映白莺山茶树资源的遗传多样性。研究白莺山地区茶树的遗传多样性及取样策略,对茶树种质资源的保护与利用具有积极意义。

本文引用格式

毛娟 , 江鸿键 , 李崇兴 , 马建强 , 陈亮 . 云南白莺山地区茶树遗传多样性研究[J]. 茶叶科学, 2018 , 38(1) : 69 -77 . DOI: 10.13305/j.cnki.jts.2018.01.007

Abstract

Tea germplasms including Camellia sinensis var. assamica, wild and semi-wild C. taliensis, and interspecific hybrid populations of the aforesaid species, are widely distributed in Baiyingshan Mountain of Yunnan Province. In this study, a core set of SSR markers were employed to assess the genetic diversity of tea germplasms derived from Baiyingshan Mountain. The results showed that a total of 202 alleles were detected, and the average number of allele (A) per SSR was 6.73, and 0.6135 for the average of expected heterozygosity (HE), –0.1745 for the mean of inbreed coefficient (Fis). The polymorphic information content (PIC) and gene diversity (H) were estimated to be 0.5652 and 0.6112 on average, respectively. The regression curves of genetic parameters influenced by population size showed that it could reach an optimized coverage of genetic diversity as the sample size was higher than 40. Investigation of the genetic diversity of tea germplasms in Baiyingshan Mountain was of vital importance for protection and utilization of these resources in the future.

参考文献

[1] Chen L, Apostolides Z, Chen Z M.Global tea breeding: achievements, challenges and perspectives [M]. Springer-Zhejiang University Press, 2012: 1.
[2] 张宏达. 茶树的系统分类[J]. 中山大学学报(自然科学版), 1981(1): 87-99.
[3] 陈亮, 虞富莲, 童启庆. 关于茶组植物分类与演化的讨论[J]. 茶叶科学, 2000, 20(2): 89-94.
[4] 虞富莲. 论茶树原产地和起源中心[J]. 茶叶科学, 1986, 6(1): 1-8.
[5] 闵天禄, 张文驹. 山茶属植物的进化与分布[J]. 云南植物研究, 1996, 18(1): 1-13.
[6] Zhao D W, Yang J B, Yang S X, et al.Genetic diversity and domestication origin of tea plant Camellia taliensis (Theaceae) as revealed by microsatellite marker[J]. BMC Plant Biology, 2014, 14(1): 14.
[7] 赵东伟, 杨世雄. 山茶科大苞茶的再发现及形态特征修订[J]. 热带亚热带植物学报, 2012, 20(4): 399-402.
[8] 陈文雄, 季鹏章, 黄兴奇, 等. 本山茶与勐库茶疑似杂交后代的RAPD鉴定[J]. 北方园艺, 2008, 10: 153-155.
[9] 吴华玲, 李崇兴, 陈栋, 等. 基于形态鉴定及叶片解剖结构对云南白莺山古茶树资源的聚类分析[J]. 中国农学通报, 2014, 30(31): 114-121.
[10] Porebski S, Bailey L G, Baum B R.Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components[J]. Plant Molecular Biology Reporter, 1997, 15(1): 8-15.
[11] 黄丹娟. 我国茶树优良品种遗传多样性分析及指纹图谱构建[D]. 北京: 中国农业科学院, 2016: 10-28.
[12] Yeh F C, Boylet J B.Population genetic analysis of codominant and dominant markers and quantitative traits[J]. Belgian Journal of Botany, 1997, 129: 157-163.
[13] Peakall R, Smouse P E.GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research[J]. Molecular Ecology Notes, 2006, 6(1): 288-295.
[14] Liu K, Muse S V.PowerMarker: an integrated analysis environment for genetic marker analysis[J]. Bioinformatics, 2005, 21(9): 2128-2129.
[15] Hubisz M J, Falush D S, Stephens M, et al.Inferring weak population structure with the assistance of sample group information[J]. Molecular Ecology Resources, 2009, 9(5): 1322-1332.
[16] Earl D A, VonHoldt B M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method[J]. Conservation Genetics Resources, 2012, 4(2): 359-361.
[17] Jakobsson M, Rosenberg N A.CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure[J]. Bioinformatics, 2007, 23(14): 1801-1806.
[18] Rosenberg N A.DISTRUCT: a program for the graphical display of population structure[J]. Molecular Ecology Resources, 2004, 4(1): 137-138.
[19] Zhao R, Cheng Z, Lu W F, et al.Estimating genetic diversity and sampling strategy for a wild soybean (Glycine soja) population based on different molecular markers[J]. Chinese Science Bulletin, 2006, 51(10): 1219-1227.
[20] IBM Corp.Statistics for windows, version 20.0. Armonk, NY: IBM Corp, 2012.
[21] Taniguchi F, Kimura K, Saba T, et al.Worldwide core collections of tea (Camellia sinensis) based on SSR markers[J]. Tree Genetics & Genomes, 2014, 6(10): 1555-1565.
[22] Yao M Z, Ma C L, Qiao T T, et al.Diversity distribution and population structure of tea germplasms in China revealed by EST-SSR markers[J]. Tree Genetics & Genomes, 2012, 8(1): 205-220.
[23] 王丽鸳, 刘本英, 姜燕华, 等. 用SSR分子标记研究茶组植物种间亲缘进化关系[J]. 茶叶科学, 2009, 29(5): 341-346.
[24] Emanuelli F, Lorenzi S, Grzeskowiak L, et al.Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape[J]. BMC Plant Biology, 2013, 13(1): 39.
[25] Garris A J, Tai T H, Coburn J, et al.Genetic structure and diversity in Oryza sativa L[J]. Genetics, 2005, 169(3): 1631-1638.
[26] Würschum T, Langer S M, Longin C F H, et al. Population structure, genetic diversity and linkage disequilibrium in elite winter wheat assessed with SNP and SSR markers[J]. Theoretical and Applied Genetics, 2013, 126(6): 1477-1486.
[27] 刘本英, 李友勇, 孙雪梅, 等. EST-SSR分析云南茶树资源的遗传多样性和亲缘关系[J]. 核农学报, 2010, 5: 956-967.
[28] 刘本英, 孙雪梅, 李友勇, 等. 基于EST-SSR标记的云南无性系茶树良种遗传多样性分析及指纹图谱构建[J]. 茶叶科学, 2012, 32(3): 261-268.
[29] 周萌, 李友勇, 孙雪梅, 等. 基于EST-SSR标记的云南大茶树遗传多样性分析[J]. 华北农学报, 2013, 28(S1): 91-96.
[30] 熊敏, 田双, 张志荣, 等. 华木莲居群遗传结构与保护单元[J]. 生物多样性, 2014, 22(4): 476-484.
[31] 张颖君, 杨崇仁, 曾恕芬, 等. 白莺山古茶的化学成分分析与栽培茶树的起源[J]. 云南植物研究, 2010, 32(1): 77-82.
[32] Schumer M, Rosenthal G G, Andolfatto P.How common is homoploid hybrid speciation?[J]. Evolution, 2014, 68(6): 1553-1560.
[33] Rieseberg L H, Raymond O, Rosenthal D M, et al.Major ecological transitions in wild sunflowers facilitated by hybridization[J]. Science, 2003, 301(5637): 1211-1216.
[34] Schumer M, Cui R, Rosenthal, G G, et al.Reproductive isolation of hybrid populations driven by genetic incompatibilities[J]. PLoS Genetics, 2015, 11(3): e1005041.
[35] McNeely J A, Miller K R, Reid W V, et al. Conserving the world's biological diversity[M]. Switzerland: International Union for Conservation of Nature and Natural Resources, 1990: 17.
[36] Yao M Z, Chen L, Liang Y R.Genetic diversity among tea cultivars from China, Japan and Kenya revealed by ISSR markers and its implication for parental selection in tea breeding programmes[J]. Plant Breeding, 2008, 127(2): 166-172.
[37] 季鹏章, 汪云刚, 蒋会兵, 等. 云南大理茶资源遗传多样性的AFLP分析[J]. 茶叶科学, 2009, 29(5): 329-335.
[38] 王丽鸳, 姜燕华, 段云裳, 等. 利用SSR分子标记分析茶树地方品种的遗传多样性[J]. 作物学报, 2010, 36(12): 2191-2195.
文章导航

/