欢迎访问《茶叶科学》,今天是

不同风味类型铁观音乌龙茶香气组成化学模式识别研究

  • 陈林 ,
  • 林清霞 ,
  • 张应根 ,
  • 陈键 ,
  • 王丽丽 ,
  • 余文权 ,
  • 尤志明
展开
  • 1. 福建省农业科学院茶叶研究所,福建 福安 355015;
    2. 国家茶树改良中心福建分中心,福建 福安 355015
陈林,男,博士,副研究员,主要从事茶叶加工、茶叶生物化学及其综合利用方面的研究。

收稿日期: 2017-08-21

  修回日期: 2017-11-01

  网络出版日期: 2019-08-28

基金资助

福建省科技重大专项专题(2017NZ0002-1)、福建省自然科学基金(2016J01121)、福建省属公益类项目(2015R1012-3)

Aroma Profiling of Tieguanyin Oolong Tea with Different Flavor Characteristics Based on Chemical Pattern Recognition

  • CHEN Lin ,
  • LIN Qingxia ,
  • ZHANG Yinggen ,
  • CHEN Jian ,
  • WANG Lili ,
  • YU Wenquan ,
  • YOU Zhiming
Expand
  • 1. Tea Research Institute, Fujian Academy of Agricultural Sciences, Fu′an 355015, China;
    2. Fujian Division of National Center for Tea Improvement, Fu′an 355015, China

Received date: 2017-08-21

  Revised date: 2017-11-01

  Online published: 2019-08-28

摘要

铁观音乌龙茶按现行国家标准可划分“清香型”、“浓香型”和“陈香型”3种风味类型。本试验在对安溪铁观音收集和审评分类基础上,采用顶空固相微萃取和气相色谱-质谱联用法(HS-SPME/GC-MS)对各茶样进行香气成分检测,并通过主成分分析(PCA)、正交偏最小二乘判别分析(OPLS-DA)等可视化模式识别方法比较了不同风味铁观音新茶和不同质量等级铁观音陈茶香气组成的特征差异。结果表明:(1)铁观音新茶和陈茶香气组成的化学模式存在明显的类群区分。铁观音新茶相较陈茶具有更为丰富的香气组分,其中醇类、酯类和烯烃类化合物是铁观音新茶“清新”风味的主要赋香成分,而醛类和酮类化合物则是形成铁观音“陈香”风味的重要物质基础。橙花叔醇、吲哚、α-法呢烯、2-甲基丁酸-2-苯乙酯、己酸-顺式-3-己烯酯、2-甲基苯基甲酸甲酯、丁酸苯乙酯、2-甲基丙酸-2-苯基乙酯、2-苄基(苯甲基)异氰化、己酸异戊酯和香叶基丙酮可作为区分铁观音新茶和陈茶的主要特征香气成分。(2)铁观音新茶按其香气组成可划分为“显酸茶”、“正韵茶和青韵茶”、“浓香茶”3个茶样类群。带“酸香”风味的“显酸茶”主要与酯类化合物密切相关,而显“火香”风味的“浓香茶”香气成分多为长链缩合态化合物,且二者均较“正韵茶和青韵茶”香气组成更为丰富。(3)不同贮藏年份的铁观音陈茶香气组成无明显的类群区分,但有潜在的质量等级差异。高级铁观音陈茶的酯类化合物相对丰富,醛类和酮类化合物含量相对较低。该研究结果可为铁观音产品的分类鉴别和风味品质评价提供参考。

本文引用格式

陈林 , 林清霞 , 张应根 , 陈键 , 王丽丽 , 余文权 , 尤志明 . 不同风味类型铁观音乌龙茶香气组成化学模式识别研究[J]. 茶叶科学, 2018 , 38(3) : 253 -262 . DOI: 10.13305/j.cnki.jts.2018.03.005

Abstract

According to the current national standards, Tieguanyin Oolong teas would be classified into three flavor types, Fresh-scent, Strong-scent and Stale-scent. In this experiment, Tieguanyin collected from their original regions (Anxi County) were categorized into several groups by preliminary sensory evaluation. Thereafter, aroma components in these tea samples were determined using headspace solid-phase micro-extraction and gas chromatography-mass spectrometry (HS-SPME/GC-MS), and their differences between new Tieguanyin (less than one year storage) with different flavor characteristics and old Tieguanyin (more than one year storage) with different storage time and quality ranks were compared through visual pattern recognition based on principal component analysis (PCA), and orthogonal partial least squares discriminant analysis (OPLS-DA) combined with other statistical methods. The results showed that aroma patterns of all tea samples could be obviously divided into two groups according to storage time. The total amount of aroma compounds was more abundant in new Tieguanyin than that of old Tieguanyin. Alcohols, esters and alkenes were the main compounds which contributed to the new fresh-scent flavor of new Tieguanyin, and aldehydes and ketones were the characteristic compounds of stale-scent flavor in old Tieguanyin. Nerolidol, indole, α-farnesene, 2-phenylethyl 2-methylbutanoate, cis-3-hexenyl hexanoate, formic acid, (2-methylphenyl) methyl ester, phenylethyl butyrate, phenylethyl isobutyrate, 2-tolylisocyanide, isopentyl hexanoate and geranyl acetone could be considered as the key markers to discriminate the two types of Tieguanyin. Moreover, new Tieguanyin could be also classified as Group 1 (Long-time withering), Group 2 (Medium-time withering and Short-time withering), and Group 3 (Strong-scent) based on their aroma constitutes. Aroma components were richer in tea samples from both Group 1 and Group 3 than those from Group 2. The acidic flavor of tea samples from Long-time withering was closely associated with ester compounds, while aroma components of tea samples from Strong-scent were mostly condensed compounds with long carbon chains. No obvious differences could be detected in old Tieguanyin, which had different storage time, but there were some potential differences among tea samples with high quality ranks. Tieguanyin of excellent sensory quality were relatively abundant in ester compounds, and low in contents of aldehydes and ketones. These results could provide references for classification, identification and quality evaluation of Tieguanyin products.

参考文献

[1] 张珍珍, 杨远帆, 孙浩, 等. 3种清香型铁观音挥发性成分及香味特征[J]. 集美大学学报(自然科学版), 2016, 21(3): 175-183.
[2] 刘坤城, 黄火良, 黄东方, 等. GB/T 19598—2006 地理标志产品安溪铁观音[S]. 北京: 中国标准出版社, 2006.
[3] 林锻炼, 张雪波, 翁昆, 等. GB/T 30357.2—2013 乌龙茶第2部分:铁观音[S]. 北京: 中国标准出版社, 2013.
[4] Mirasoli M, Gotti R, Di Fusco M, et al.Electronic nose and chiral-capillary electrophoresis in evaluation of the quality changes in commercial green tea leaves during a long-term storage[J]. Talanta, 2014, 129: 32-38.
[5] Ananingsih V K, Sharma A, Zhou W B.Green tea catechins during food processing and storage: a review on stability and detection[J]. Food Res Int, 2013, 50(2): 469-479.
[6] Duda-Chodak A, Tarko T, Sroka P, et al. Antioxidant activity of different kinds of commercially available teas - diversity and changes during storage[J]. Electr J Pol Agric Univ, 2008(4).
[7] 林锻炼. 陈香型铁观音感官品质及主要化学成分研究[J]. 中国茶叶加工, 2015(1): 21-23, 30.
[8] 张娴静. 不同工艺铁观音香气形成的生化及分子生物学机制研究[D]. 福州: 福建农林大学, 2012.
[9] 马军辉. HS-SPME-GC-MS检测茶叶内挥发性组分方法的建立及应用[D]. 杭州: 浙江大学, 2008.
[10] 许凌, 周卫龙, 高海燕, 等. GB/T 8303-2013 茶磨碎试样的制备及其干物质含量测定[S]. 北京: 中国标准出版社, 2014.
[11] 柯朝甫, 张涛, 武晓岩, 等. 代谢组学数据分析的统计学方法[J]. 中国卫生统计, 2014, 31(2): 357-359, 65.
[12] 陈林, 陈键, 陈泉宾, 等. 做青工艺对乌龙茶香气组成化学模式的影响[J]. 茶叶科学, 2014, 34(4): 387-395.
[13] 陈林, 张应根, 陈键, 等. 清香型乌龙茶品质形成过程中香气组成化学模式的动态变化规律[J]. 茶叶科学, 2013, 33(1): 53-59.
[14] 侯冬岩, 回瑞华, 刁全平, 等. 三种不同制作工艺的铁观音茶香气组分比较分析[J]. 鞍山师范学院学报, 2014, 16(6): 27-30.
[15] 谢诚, 欧昌荣, 汤海青, 等. 食品中挥发性风味成分提取技术研究进展[J]. 核农学报, 2015, 29(12): 2366-2374.
[16] Ho C-T, Zheng X, Li S.Tea aroma formation[J]. Food Sci Human Well, 2015, 4(1): 9-27.
[17] 张灵枝, 王登良, 陈维信, 等. 不同贮藏时间的普洱茶香气成分分析[J]. 园艺学报, 2007, 34(2): 504-506.
[18] 王秋霜, 吴华玲, 凌彩金, 等. 普洱茶理化品质及特征“陈香”物质基础研究[J]. 食品工业科技, 2017, 38(5): 308-314.
[19] 陈梅春, 刘晓港, 朱育菁, 等. 顶空固相微萃取-气质联用法测定不同陈化时间普洱茶香气成分[J]. 食品安全质量检测学报, 2016, 7(6): 2396-2414.
[20] Chen Y J, Kuo P C, Yang M L, et al.Effects of baking and aging on the changes of phenolic and volatile compounds in the preparation of old Tieguanyin Oolong teas[J]. Food Res Int, 2013, 53(2): 732-743.
[21] Kuo P C, Lai Y Y, Chen Y J, et al.Changes in volatile compounds upon aging and drying in Oolong tea production[J]. J Sci Food Agric, 2011, 91(2): 293-301.
文章导航

/