欢迎访问《茶叶科学》,今天是

生物质炭配施氮肥对茶树生长及氮素利用率的影响

  • 王峰 ,
  • 吴志丹 ,
  • 陈玉真 ,
  • 江福英 ,
  • 朱留刚 ,
  • 张文锦 ,
  • 翁伯琦 ,
  • 尤志明
展开
  • 1 福建省农业科学院茶叶研究所,福建 福安 355015;
    2 福建茶树及乌龙茶加工科学观测站,福建 福安 355015;
    3福建省红壤山地农业生态过程重点实验室,福建 福州 350013
王峰,男,助理研究员,主要研究方向为茶树栽培与环境生态,82458lin@163.com。

收稿日期: 2017-11-17

  修回日期: 2017-12-27

  网络出版日期: 2019-10-15

基金资助

国家重点研发计划(2016YFD0200903)、福建省自然科学基金(2016J01120)、福建省公益类科研院所专项(2015R1012-5,2015R1012-6,2016R1011-4)、中央引导地方科技发展专项(2016L3004)、福建省科技重大专项(2017NZ0002)、福建省农业科学院科技创新团队(STIT2017-1-3)

Effects of the Combined Application of Biochar and Nitrogen on Growth and Nitrogen Use Efficiency of Tea Plants

  • WANG Feng ,
  • WU Zhidan ,
  • CHEN Yuzhen ,
  • JIANG Fuying ,
  • ZHU Liugang ,
  • ZHANG Wenjin ,
  • WENG Boqi ,
  • YOU Zhiming
Expand
  • 1. Tea Research Institute, Fujian Academy of Agricultural Sciences, Fu′an 355015, China;
    2. Scientific Observing and Experimental Station of Tea Tree and Oolong Tea Processes in Fujian, Ministry of Agriculture, Fu′an 355015, China;
    3. Fujian Province Key Laboratory of Agro-Ecological Processes in Hilly Red Soil, Fuzhou 350013, China

Received date: 2017-11-17

  Revised date: 2017-12-27

  Online published: 2019-10-15

摘要

通过水泥池小区试验,采用15N同位素示踪技术,研究了生物质炭配施氮肥对茶树生长及氮素利用率(茶树吸收、土壤氨挥发、N2O和土壤残留量)的影响。结果表明,与不施生物质炭且不施氮肥(B0N0)处理相比,施氮能促进茶树的生长发育,茶树株高、树幅和基部径粗均显著增加,茶叶增产68.06%~112.63%。生物质炭对茶叶产量的影响因施氮量而异,在不施氮(N0)和减量化施氮(N1)条件下,配施生物质炭处理茶叶产量增加8.82%和8.75%,而常规施氮(N2)条件下配施生物质炭处理茶叶产量略有降低,但差异均不显著。与B0N0处理相比,施氮处理土壤氨挥发和N2O排放量显著增加;在N1条件下,配施生物质炭(B1N1)处理氨挥发和N2O累积排放量分别降低了5.87%和4.99%;在N2条件下,配施生物质炭(B1N2)处理氨挥发和N2O累积排放量分别降低了9.97%和11.41%,B1N2处理氮素减排效果更好。与单施氮肥处理相比,配施生物质炭均能增加茶树各器官氮含量、15N丰度和Ndff值,有利于茶树对氮素的吸收利用。与单施氮肥处理相比,配施生物质炭处理茶树15N利用率和15N残留率分别增加了0.46~3.93百分点和4.09~14.37百分点,15N损失率下降4.54~18.30百分点,其中B1N1处理效果优于B1N2处理。总体而言,生物质炭配施氮肥促进了茶树对氮的吸收,增加土壤氮素持留,并降低氮素气态损失,从而提高了氮素利用率,以减量化施氮配施生物质炭(B1N1)处理茶树能起到“减氮增产”效果,具有良好的应用前景。

本文引用格式

王峰 , 吴志丹 , 陈玉真 , 江福英 , 朱留刚 , 张文锦 , 翁伯琦 , 尤志明 . 生物质炭配施氮肥对茶树生长及氮素利用率的影响[J]. 茶叶科学, 2018 , 38(4) : 331 -341 . DOI: 10.13305/j.cnki.jts.2018.04.001

Abstract

A pool experiment was conducted to study the effects of combined application of biochar and nitrogen fertilizer on tea plant growth and 15N transformation (Tree uptake, ammonia volatilization, N2O emission and soil residual) using 15N trace technique. The results showed that the N application treatments improved the tea plant growth, and the tea yields of nitrogen application treatments increased from 68.06% to 112.63% as compared B0N0. Biochar effect on tea yields varied with N applications. Under N0 and N1 conditions, the tea yields of B1N0 and B1N1 treatments increased by 8.82% and 8.75%. But under N2 conditions, the tea yield of B1N2 treatment was slightly reduced, although not significant. Compared with the B0N0, N application significantly increased the amounts of ammonia volatilization and N2O emission. Under N1 conditions, the B1N1 treatment reduced the ammonia volatilization and N2O emission by 5.87% and 4.99% respectively. Under N2 conditions, the B1N2 treatment reduced the ammonia volatilization and N2O emission by 9.97% and 11.41% respectively. Compared with N treatment, the biochar mixed with N treatments increased the nitrogen concentration, 15N and the contribution of N derived from fertilizer (Ndff) in different parts of tea plants, thereby facilitated nitrogen uptake. The 15N use efficiency and 15N residue rate of biochar mixed with N treatments were higher than those of the N treatments with the percentages increasing by 0.46 to 3.93 percent and 4.09 to 14.37 percent respectively. The 15N loss rates of biochar mixed with N treatments were lower than those under N treatments, which were 4.54% to 18.30% differences, especially for B1N1 treatment. In general, application of biochar in tea garden soil could promote N uptake in tea plants, increase the N fixed by soil and decrease N gaseous loss, thus improve the N use efficiency. Taken together, the results supported the theory of “less N fertilizer and increase yield” under B1N1 treatment, and this approach could be applied in tea production.

参考文献

[1] Hilton P J, Palmer Jones R, Ellis R T.Effects of season and nitrogen fertiliser upon the flavanol composition and tea making quality of fresh shoots of tea (Camellia sinensis L.) in Central Africa[J]. Journal of the Science of Food Agriculture, 2010, 24(7): 819-826.
[2] 张振梅, 石元值, 马立锋, 等. 采摘标准与施氮水平对茶树春茶产量、品质及氮素利用的影响[J]. 茶叶科学, 2014, 34(5): 506-514.
[3] 马立锋, 苏孔武, 黎金兰, 等. 控释氮肥对茶叶产量、品质和氮素利用效率及经济效益的影响[J]. 茶叶科学, 2015, 35(4): 354-362.
[4] 阮建云, 吴洵, 石元值, 等. 中国典型茶区养分投入与施肥效应[J]. 土壤肥料, 2001(5): 9-13.
[5] 吴询, 茹国敏. 茶树对氮肥的吸收和利用[J]. 茶叶科学, 1986, 6(2): 15-24.
[6] Qin P, Qi Y C, Dong Y S, et a1. Soil nitrous oxide emissions from a typical semiarid temperate steppe in inner Mongolia: effects of mineral nitrogen fertilizer levels and forms[J]. Plant Soil, 2011, 342: 345-357.
[7] 刘宗岸, 杨京平, 杨正超, 等. 苕溪流域茶园不同种植模式下地表径流氮磷流失特征[J]. 水土保持学报, 2012, 26(2): 29-32.
[8] 王峰, 陈玉真, 吴志丹, 等. 酸性茶园土壤氨挥发及其影响因素研究[J]. 农业环境科学学报, 2016, 35(4): 808-816.
[9] Zwieten L V, Kimber S, Morris S, et al.Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility[J]. Plant and Soil, 2010, 327(1): 235-246.
[10] Yao Y, Gao B, Zhang M, et al.Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil[J]. Chemosphere, 2012, 89(11): 1467-1471.
[11] Clough T J, Condron L M, Kammann C, et al.A Review of Biochar and Soil Nitrogen Dynamics[J]. Agronomy, 2013, 3(2): 275-293.
[12] 俞映倞, 薛利红, 杨林章, 等. 生物炭添加对酸化土壤中小白菜氮素利用的影响[J]. 土壤学报, 2015, 52(4): 759-767.
[13] 张爱平, 刘汝亮, 高霁, 等. 生物炭对宁夏引黄灌区水稻产量及氮素利用率的影响[J]. 植物营养与肥料学报, 2015, 21(5): 1352-1360.
[14] 曲晶晶, 郑金伟, 郑聚锋, 等. 小麦秸秆生物黑炭对水稻产量及晚稻氮素利用率的影响[J]. 生态与农村环境学报, 2012, 28(3): 288-293.
[15] Zhang A, Bian R, Pan G, et al.Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: A field study of 2 consecutive rice growing cycles[J]. Field Crops Research, 2012, 127: 153-160.
[16] Li B, Bi Z, Xiong Z.Dynamic responses of nitrous oxide emission and nitrogen use efficiency to nitrogen and biochar amendment in an intensified vegetable field in southeastern China[J]. Global Change Biology Bioenergy, 2017, 9(2): 400-413.
[17] Zhu Q, Peng X, Huang T.Contrasted effects of biochar on maize growth and N use efficiency depending on soil conditions[J]. International Agrophysics, 2016, 29(2): 257-266.
[18] Zhu Q H, Peng X H, Huang T Q, et al.Effect of biochar addition on maize growth and nitrogen use efficiency in acidic red soils[J]. Pedosphere, 2014, 24(6): 699-708.
[19] 吴志丹, 尤志明, 江福英, 等. 生物黑炭对酸化茶园土壤的改良效果[J]. 福建农业学报, 2012, 27(2): 167-172.
[20] 王朝辉, 刘学军, 巨晓棠. 田间土壤氨挥发的原位测定-通气法[J]. 植物营养与肥料学报, 2002, 8(2): 205-209.
[21] 李露, 周自强, 潘晓健, 等.不同时期施用生物炭对稻田N2O和CH4排放的影响[J]. 土壤学报, 2015(4): 839-848.
[22] 萧自位, 王丽娟, 毛加梅, 等. 西双版纳不同林茶复合生态系统碳储量[J]. 生态学杂志, 2012, 31(7): 1617-1625.
[23] 曼如, 束怀瑞, 周宏伟. 苹果氮素营养研究Ⅳ.贮藏15N的运转、分配特性[J]. 园艺学报, 1986, 13(1): 23-30.
[24] Sun H, Zhang H, Min J, et al.Controlled-release fertilizer, floating duckweed, and biochar affect ammonia volatilization and nitrous oxide emission from rice paddy fields irrigated with nitrogen-rich wastewater[J]. Paddy Water Environment, 2016, 14(1): 105-111.
[25] Wu F, Jia Z, Wang S, et al.Contrasting effects of wheat straw and its biochar on greenhouse gas emissions and enzyme activities in a Chernozemic soil[J]. Biology and fertility of soils, 2013, 49(5): 555-565.
[26] Han W, Xu J, Wei K, et al.Estimation of N2O emission from tea garden soils, their adjacent vegetable garden and forest soils in eastern China[J]. Environmental Earth Sciences, 2013, 70(6): 2495-2500.
[27] Fu X Q, Li Y, Su W J, et al.Annual dynamics of N2O emissions from a tea field in southern subtropical China[J]. Plant Soil Environment, 2012, 58(8): 373-378.
[28] Hou M, Ohkama-Ohtsu N, Suzuki S, et al.Nitrous oxide emission from tea soil under different fertilizer managements in Japan[J]. Catena, 2015, 135: 304-312.
[29] Fu X, Liu X, Li Y, et al.Wet-season spatial variability in N2O emissions from a tea field in subtropical central China[J]. Biogeosciences Discussions, 2015, 12(2): 1475-1508.
[30] 尹昌, 范分良, 李兆君, 等. 长期施用有机和无机肥对黑土nirS型反硝化菌种群结构和丰度的影响[J]. 环境科学, 2012, 33(11): 3967-3975.
[31] 张婧, 夏光利, 李虎, 等. 一次性施肥技术对冬小麦/夏玉米轮作系统土壤N2O排放的影响[J]. 农业环境科学学报, 2016, 35(1): 195-204.
[32] Yao Z, Zheng X, Dong H, et al.A 3-year record of N2O and CH4 emissions from a sandy loam paddy during rice seasons as affected by different nitrogen application rates[J]. Agriculture Ecosystems & Environment, 2012, 152(3): 1-9.
[33] 王峰, 陈玉真, 吴志丹, 等. 施用生物质炭对酸性茶园土壤氨挥发的影响[J]. 茶叶科学, 2017, 37(1): 60-70.
[34] Kastner J R, Miller J, Das K.Pyrolysis conditions and ozone oxidation effects on ammonia adsorption in biomass generated chars[J]. Journal of Hazardous Materials, 2009, 164(2): 1420-1427.
[35] Wang J, Chen Z, Xiong Z, et al.Effects of biochar amendment on greenhouse gas emissions, net ecosystem carbon budget and properties of an acidic soil under intensive vegetable production[J]. Soil Use and Management, 2015, 31(3): 375-383.
[36] 陈玉真, 王峰, 尤志明, 等. 添加生物黑炭对茶园土壤CO2、N2O排放的影响[J]. 农业环境科学学报, 2015, 34(5): 1009-1016.
[37] Cayuela M L, Jeffery S, van Zwieten L. The molar H: Corg ratio of biochar is a key factor in mitigating N2O emissions from soil[J]. Agriculture, Ecosystems Environment, 2015, 202: 135-138.
[38] Dempster D N, Gleeson D B, Solaiman Z M, et al.Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil[J]. Plant Soil, 2012, 354(1): 311-324.
[39] Zwieten L V, Singh B P, Kimber S W L, et al. An incubation study investigating the mechanisms that impact N2O flux from soil following biochar application[J]. Agriculture Ecosystems Environment, 2014, 191: 53-62.
[40] Jaiswal A K, Elad Y, Graber E R, et al.Rhizoctonia solani, suppression and plant growth promotion in cucumber as affected by biochar pyrolysis temperature, feedstock and concentration[J]. Soil Biology Biochemistry, 2014, 69(1): 110-118.
[41] Viger M, Hancock R D, Miglietta F, et al.More plant growth but less plant defence? First global gene expression data for plants grown in soil amended with biochar[J]. Global Change Biology Bioenergy, 2015, 7(4): 658-672.
[42] 马立锋. 茶树氮素吸收利用与氮肥施用技术研究[D]. 北京: 中国农业科学院, 2015: 33-36.
[43] 张伟明, 管学超, 黄玉威, 等. 生物炭与化学肥料互作的大豆生物学效应[J]. 作物学报, 2015, 41(1): 109-122.
[44] 刘玉学. 生物质炭输入对土壤氮素流失及温室气体排放特性的影响[D]. 杭州: 浙江大学, 2011: 81-82.
[45] 张万杰, 李志芳, 张庆忠, 等. 生物质炭和氮肥配施对菠菜产量和硝酸盐含量的影响[J]. 农业环境科学学报, 2011, 30(10): 1946-1952.
[46] 袁晶晶, 同延安, 卢绍辉, 等. 生物炭与氮肥配施对土壤肥力及红枣产量、品质的影响[J]. 植物营养与肥料学报, 2017, 23(2): 468-475.
[47] 李琦, 马莉, 赵跃, 等. 不同温度制备的棉花秸秆生物碳对棉花生长及氮肥利用率(15N)的影响[J]. 植物营养与肥料学报, 2015, 21(3): 600-607.
[48] 苏有健, 廖万有, 丁勇, 等. 不同氮营养水平对茶叶产量和品质的影响[J]. 植物营养与肥料学报, 2011, 17(6): 1430-1436.
[49] 葛顺峰, 姜远茂, 魏绍冲, 等. 不同供氮水平下幼龄苹果园氮素去向初探[J]. 植物营养与肥料学报, 2011, 17(4): 949-955.
文章导航

/