欢迎访问《茶叶科学》,今天是

不同培肥方式对茶园土壤团聚体中有机碳和全氮分布的影响

  • 王利民 ,
  • 黄东风 ,
  • 李清华 ,
  • 何春梅 ,
  • 张辉 ,
  • 刘彩玲 ,
  • 栗方亮 ,
  • 黄毅斌
展开
  • 福建省农业科学院土壤肥料研究所,福建 福州 350013
王利民,男,博士,主要从事土壤改良和生态恢复研究。

收稿日期: 2018-01-18

  修回日期: 2018-03-07

  网络出版日期: 2019-10-15

基金资助

省属公益类基本科研专项(2015R1002-2)、福建省属公益类基本科研专项(2015R1022-3)、国家家绿肥产业技术体系(CARS-22-1)

Organic Carbon and Total Nitrogen Distribution in Aggregates from Yellow-red Soils Under Tea Plantations with Different Fertilizer Managements

  • WANG Limin ,
  • HUANG Dongfeng ,
  • LI Qinghua ,
  • HE Chunmei ,
  • ZHANG Hui ,
  • LIU Cailing ,
  • LI Fangliang ,
  • HUANG Yibin
Expand
  • Soil and Fertilizer Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China

Received date: 2018-01-18

  Revised date: 2018-03-07

  Online published: 2019-10-15

摘要

通过长期定位试验,研究不施肥(CK)、100%化肥(CF)和50%化肥+50%有机肥+豆科植物(IF)等3种处理对茶园黄红壤团聚体及其有机碳(TOC)和全氮(TN)分布的影响。结果表明,各处理均以≥2βmm水稳性团聚体占优势,其质量分数高达54.95%~66.97%;同时,该级水稳性团聚体中TOC、TN储量分别是相应全土总量的33.31%~45.45%和33.76%~46.60%。其中,不同粒径水稳性团聚体TOC和TN的贡献率在IF和CF处理中的大小排序为(≥2βmm)>(<0.5~0.25βmm)>(<1~0.5βmm)>(<2~1βmm)>(<0.25~0.106βmm),而在CK中为(≥2 mm)>(<1~0.5βmm)>(<0.5~0.25βmm)>(<2~1βmm)>(<0.25~0.106βmm)。与CK相比,IF处理可显著(P<0.05)提升≥2βmm水稳性团聚体的含量和平均重量直径,增加该粒径水稳性大团聚体中TOC和TN的含量及储量。而且,≥2βmm水稳性团聚体含量与全土TOC、TN含量均呈极显著(P<0.01)的正相关。但是,IF处理土壤不同粒径团聚体的C:N比值一般比CK低。综上表明,处理IF不仅能增加土壤及其水稳性团聚体中TOC和TN的含量及储量,而且提高水稳性团聚体的稳定性,是茶园黄红壤固碳供氮的合理培肥模式。

本文引用格式

王利民 , 黄东风 , 李清华 , 何春梅 , 张辉 , 刘彩玲 , 栗方亮 , 黄毅斌 . 不同培肥方式对茶园土壤团聚体中有机碳和全氮分布的影响[J]. 茶叶科学, 2018 , 38(4) : 342 -352 . DOI: 10.13305/j.cnki.jts.2018.04.002

Abstract

Application of livestock manures and plant residues is a feasible practice to largely mitigate soil-degradative trends by increasing amounts of organic matter. However, long-term effects of fertilization regimes on the distribution of organic carbon (TOC) and total nitrogen (TN) in aggregate size fractions were poorly documented in tea (Camellia sinensis (L.) Kuntze) plantations in subtropical areas. A 10-year study was thus conducted to elucidate the impacts of fertilization patterns on the stability and allocation of TOC, TN and C/N ratio within water stable aggregate (WSA) fractions in soils under non-fertilization control (CK), chemical fertilizers only (CF), and integrated use of chicken manure and legume straw with chemical fertilizers (IF), respectively. Soil (0-20 cm) samples were collected and separated into ≥2, <2-1, <1-0.5, <0.5-0.25 and <0.25-0.106βmm aggregate classes by wet sieving, and finally used for TOC and TN analysis. The results showed that the IF treatment significantly (P<0.05) increased TOC and TN storage in all aggregate fractions relative to that of CK. Irrespective of the fertilization patterns, tea soils in subtropical China stored higher amounts of TOC and TN in the ≥2βmm water-stable fraction. In terms of the TOC and TN storage, the order of different aggregate fractions in IF- and CF-treated soils was (≥2β mm ) > (<0.5-0.25βmm) > (<1-0.5βmm) > (<2-1βmm) > (<0.25-0.106βmm), whereas that of CK-treated soils was (≥2βmm) > (<1-0.5βmm) > (<0.5-0.25βmm) > (<2-1βmm) > (<0.25-0.106βmm). Furthermore, the percentage of WSA ≥2βmm ranged from 54.95% under CK to 66.97% under IF treatment. Furthermore, TOC and TN adhered to WSA ≥2βmm, which accounted for 33.31%~45.45% of TOC and 33.76%~46.60% of TN in bulk soils under all treatments. Meanwhile, the IF treatment significantly (P<0.05) increased mean weight diameter (MWD) of aggregates as compared to that in CK- and CF- treated soils. However, a lower C:N ratio was observed in different aggregate fractions in IF-treated soils compared with that of CK. Additionally, WSA ≥2βmm was positively and significantly correlated with TN and TOC contents. In conclusion, the IF treatment improved aggregate stability, increased C and N storage in bulk soil and aggregates, and thus enhanced soil quality in tea farms in subtropical China.

参考文献

[1] 谢钧宇, 杨文静, 强久次仁, 等. 长期不同施肥下塿土有机碳和全氮在团聚体中的分布[J]. 植物营养与肥料学报, 2015, 21(6): 1413-1422.
[2] 樊红柱, 秦鱼生, 陈庆瑞, 等. 长期施肥紫色水稻土团聚体稳定性及其固碳特征.[J] 植物营养与肥料学报, 2015, 21(6): 1473-1480.
[3] Tripathi R, Nayak AK, Bhattacharyya P, et al.Soil aggregation and distribution of carbon and nitrogen in different fractions after 41 years long-term fertilizer experiment in tropical rice - rice system[J]. Geoderma, 2014, 213: 280-286.
[4] 江春玉, 刘萍, 刘明, 等. 不同肥力红壤水稻土根际团聚体组成和碳氮分布动态[J]. 土壤学报, 2017, 54(1): 138-149.
[5] 武均, 蔡立群, 齐鹏, 等. 不同耕作措施下旱作农田土壤团聚体中有机碳和全氮分布特征[J]. 中国生态农业学报, 2015, 23(3): 276-284.
[6] 区晓琳, 陈志彪, 姜超, 等. 植被恢复对亚热带侵蚀红壤团聚体养分分布的影响[J]. 水土保持学报, 2016, 30(6): 230-238.
[7] 马瑞萍, 刘雷, 安韶山, 等. 黄土丘陵区不同植被群落土壤团聚体有机碳及其组分的分布[J]. 中国生态农业学报, 2013, 21(3): 324-332.
[8] 刘晓利, 何园球, 李成亮, 等. 不同利用方式旱地红壤水稳性团聚体及其碳、氮、磷分布特征[J]. 土壤学报, 2009, 46(2): 255-262.
[9] 赵其国, 黄国勤, 马艳芹. 中国南方红壤生态系统面临的问题及对策[J]. 生态学报, 2013, 33(24): 7615-7622.
[10] 厉仁安, 曹秀芳, 俞震豫. 浙江红壤和黄壤分类研究初报[J]. 浙江大学学报, 1985, 11(2): 167-175.
[11] 江福英, 吴志丹, 尤志明, 等. 闽东地区茶园土壤养分肥力质量评价[J]. 福建农业学报, 2012, 27(4):379-384.
[12] Tan H, Zhou L, Xie R, et al.Soil organic matter and effect of long term application of compost product in sugarcane planting area[J]. Journal of Life Sciences, 2012, 6: 390-397.
[13] 王利民, 邱珊莲, 林新坚, 等. 不同培肥茶园土微生物量碳氮及相关参数的变化与敏感性分析[J]. 生态学报, 2012, 32(18): 5930-5936.
[14] 王利民, 林新坚, 黄东风, 等. 红黄壤茶园不同培肥模式的土壤理化效应[J]. 东北林业大学学报, 2012, 40(1): 54-57.
[15] 王利民, 李卫华, 范平, 等. 长期培肥下红黄壤区茶园土壤酶活性的变化[J]. 茶叶科学, 2012, 32(4): 347-352.
[16] 俞月凤, 卢凌霄, 杜虎, 等. 不同类型森林石灰土的团聚体组成及其有机碳分布特征[J]. 西北植物学报, 2013, 33(5): 1011-1019.
[17] Elliott ET.Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils[J]. Soil Science Society of America Journal, 1986, 50(3): 627-633.
[18] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2005: 25-48.
[19] Lal R.Environmental soil physics[J]. Soil Science, 2000, 165: 453-454.
[20] 邱莉萍, 张兴昌, 张晋爱. 黄土高原长期培肥土壤团聚体中养分和酶的分布[J]. 生态学报, 2006, 26(2): 364-372.
[21] Zhao JS, Chen S, Hu RG, et al.Aggregate stability and size distribution of red soils under different land uses integrally regulated by soil organic matter, and iron and aluminum oxides[J]. Soil and Tillage Research, 2017, 167: 73-79.
[22] Gomes P, Valente T, Braga MAS, et al.Enrichment of trace elements in the clay size fraction of mining soils[J]. Environmental Science and Pollution Research, 2016, 23: 6039-6045.
[23] Chen C, Zhang J, Lu M, et al.Microbial communities of an arable soil treated for 8 years with organic and inorganic fertilizers[J]. Biology Fertility of Soils, 2016, 52: 455-467.
[24] Lv MR, Li ZP, Che YP, et al.Soil organic C, nutrients, microbial biomass, and grain yield of rice (Oryza sativa L.) after 18 years of fertilizer application to an infertile paddy soil[J]. Biology and Fertility of Soils, 2011, 47: 777-783.
[25] Lovley DR, Coates JD, Blunt-Harris EL, et al.Humic substances as electron acceptors for microbial respiration[J]. Nature, 1996, 382(6590): 445-448.
[26] Piepenbrock A, Schro?der C, Kappler A. Electron transfer from humic substances to biogenic and abiogenic Fe (III) oxyhydroxide minerals[J]. Environmental Science & Technology, 2014, 48(3): 1656-1664.
[27] Wang LM, Huang DF, Fang Y, et al.Soil fungal communities in tea plantation after 10 years of chemical vs. integrated fertilization[J]. Chilean Journal of Agricultural Research, 2017, 77(4): 355-364.
[28] 何玉亭, 王昌全, 沈杰, 等. 两种生物质炭对红壤团聚体结构稳定性和微生物群落的影响[J]. 中国农业科学, 2016, 49(12): 2333-2342.
[29] 朱刘兵, 李慧, 韩燕来, 等. 化肥与有机物料配施对黄褐土团聚体分布及有机碳含量的影响[J]. 土壤通报, 2015, 46(5): 1181-1188.
[30] 邸佳颖, 刘小粉, 杜章留, 等. 长期施肥对红壤性水稻土团聚体稳定性及固碳特征的影响[J]. 中国生态农业学报, 2014, 22(10): 1129-1138.
[31] Kovac N, Bajt O, Faganeli J, et al.Study of macroaggregate composition using FT-IR and 1H-NMR spectroscopy[J]. Marine Chemistry, 2002, 78(4): 205-215.
[32] Wang JG, Yang W, Yu B, et al.Estimating the influence of related soil properties on macro-and micro-aggregate stability in ultisols of south-central China[J]. Catena, 2016, 137: 545-553.
[33] 刘希玉, 王忠强, 张心昱, 等. 施肥对红壤水稻土团聚体分布及其碳氮含量的影响[J]. 生态学报, 2013, 33(16): 4949-4955.
[34] 梁尧, 苑亚茹, 韩晓增, 等. 化肥配施不同剂量有机肥对黑土团聚体中有机碳与腐殖酸分布的影响[J]. 植物营养与肥料学报, 2016, 22(6): 1586-1594.
[35] Stewart CE, Paustian K, Conant RT, et al.Soil carbon saturation: Implications for measurable carbon pool dynamics in long-term incubations[J]. Soil Biology and Biochemistry, 2009, 41(2): 357-366.
[36] 陈轩敬, 梁涛, 赵亚南, 等. 长期施肥对紫色水稻土团聚体中有机碳和微生物的影响[J]. 中国农业科学, 2015, 48(23): 4669-4677.
[37] 郭素春, 郁红艳, 朱雪竹, 等. 长期施肥对潮土团聚体有机碳分子结构的影响[J]. 土壤学报, 2013, 50(5): 922-930.
[38] Six J, Elliott ET, Paustian K.Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture[J]. Soil Biology and Biochemistry, 2000, 32(14): 2099-2103.
[39] Puget P, Chenu C, Balesdent J.Dynamics of soil organic matter associated with particle-size fractions of water-stable aggregates[J]. European Journal of Soil Science, 2000, 51(4): 595-605.
[40] 刘震, 徐明岗, 段英华, 等. 长期不同施肥下黑土和红壤团聚体氮库分布特征[J]. 植物营养与肥料学报, 2013, 19(6): 1386-1392.
[41] 王莹, 尧水红, 李辉信, 等. 长期施肥稻田土壤团聚体内氧化铁分布特征及其与有机碳的关系[J]. 土壤, 2013, 45(4): 666-672.
[42] 王铁成, 冯百成. 盐碱土团聚体的有机碳含量分布[J]. 吉林农业科技学院学报, 2015, 24(1): 8-9.
[43] 袁颖红, 李辉信, 黄欠如, 等. 不同施肥处理对红壤性水稻土微团聚体有机碳汇的影响[J]. 生态学报, 2004, 24(12): 2961-2966.
[44] Yilmaz E, Sönmez M.The role of organic/bio-fertilizer amendment on aggregate stability and organic carbon content in different aggregate scales[J]. Soil and Tillage Research, 2017, 168: 118-124.
[45] Li WT, Liu M, Jiang CY, et al.Changes in soil aggregate- associated enzyme activities and nutrients under long-term chemical fertilizer applications in a phosphorus-limited paddy soil[J]. Soil Use and Management, 2017, 33(1): 25-33.
[46] Bhattacharyya P, Nayak AK, Mohanty S, et al.Greenhouse gas emission in relation to labile soil C, N pools and functional microbial diversity as influenced by 39 years long-term fertilizer management in tropical rice[J]. Soil and Tillage Research, 2013, 129: 93-105.
[47] 毛霞丽, 陆扣萍, 何丽芝, 等. 长期施肥对浙江稻田土壤团聚体及其有机碳分布的影响[J]. 土壤学报, 2015, 52(4): 828-838.
文章导航

/