花青素是一类广泛存在于植物中的水溶性色素,作为一种强自由基清除剂,它具有抗炎,抗氧化,降血压,降血糖等多种保健功能。紫芽茶树作为一种高花青素含量的特异性茶树资源,其研究与利用越来越受人们的关注。为了解茶树紫芽中花青素形成的分子机理,本研究通过对湖南农业大学自选紫芽品种9803与绿芽品种9806进行转录组测序及生物信息学分析,筛选得到42条与花青素代谢相关的unigene,其中比对到参考基因组中的有34条,未在参考基因组中登录的有8条。KEGG富集分析表明这42个基因被富集到5个代谢通路中,包括类黄酮合成途径,木质素合成途径,黄酮和黄酮醇合成途径,油菜素甾醇合成途径,以及参与转录因子的编码。通过荧光定量PCR验证,差异基因荧光定量PCR变化趋势与转录组测序结果一致,转录组测序数据可靠。本次试验在转录组水平上筛选出了茶叶紫芽花青素代谢相关的差异基因,为进一步揭示茶叶紫芽产生的分子机理奠定了基础。
Anthocyanins are water-soluble pigments which widely exist in plants. As strong free radical scavengers, they have many health benefical functions from anti-inflammatory, anti-oxidation, blood pressure lowering to hypoglycemic effect. The purple tea plants are a kind of specific tea germplasm rich in anthocyanins. More and more attentions had been focused on research and utilization of purple tea plants. In order to understand the molecular mechanism of anthocyanin biosynthesis in purple buds of tea, RNA-seq and bioinformatic analysis were performed using purple-buds cultivar 9803 and green-buds cultivar 9806 bred by Hunan Agricultural University, Changsha, China. Totally 42 unigenes were identified to be involved in anthocyanin biosynthetic pathway, including 34 genes registered in the GenBank database and 8 genes not reported. KEGG pathway analysis showed that differentially expression genes annotated to five metabolic pathways, including flavonoid biosynthetic pathway, lignin biosynthesis pathway, flavone and flavonol biosynthesis pathway, brassinosteroid biosynthesis pathway and encoding transcription factors. The expression profiles of differentially expressed genes by qRT-PCR were consistent with transcriptome sequencing results, demonstrating the sequencing results were reliable. In summary, many differentially expressed genes related to anthocyanin biosynthesis in the purple buds of tea were identified, which laid the foundation for further investigation of the molecular mechanism of purple bud formation in tea plants.
[1] 虞富莲. 论茶树原产地和起源中心[J]. 茶叶科学, 1986, 6(1): 1-8.
[2] 吴华玲, 何玉媚, 李家贤, 等. 11个红紫芽茶树新品系的芽叶特性和生化成分研究[J]. 植物遗传资源学报, 2012, 13(1): 42-47.
[3] 吴华玲, 乔小燕, 李家贤, 等. “红紫芽”茶树新品系的生物学特性研究[J]. 热带作物学报, 2011, 32(6): 1009-1015.
[4] 杨霞, 王利, 李少伟, 等. 花青素抗炎机制的研究进展[J]. 山东医药, 2017, 57(18): 106-109.
[5] 马春雷, 姚明哲, 王新超, 等. 茶树2个MYB转录因子基因的克隆及表达分析[J]. 林业科学, 2012, 48(3): 31-37.
[6] 马成英, 吕海鹏, 林智, 等. 茶树类黄酮O-甲基转移酶基因的克隆及原核表达分析[J]. 中国农业科学, 2013, 46(2): 325-333.
[7] 王文丽, 吴致君, 刘志薇, 等. 茶树类黄酮3′-羟化酶基因的克隆与表达特性分析[J]. 茶叶科学, 2017, 37(1): 108-118.
[8] 陈林波, 夏丽飞, 周萌, 等. 基于RNA-Seq技术的“紫娟”茶树转录组分析[J]. 分子植物育种, 2015, 13(10): 2250-2255.
[9] Sun B M, Zhu Z S, Cao P R, et al.Purple foliage coloration in tea (Camellia sinensis L.) arises from activation of the R2R3-MYB transcription factor CsAN1[J]. Sci Rep, 2016, 6(15): 32534. DOI: 10.1038/srep32534.
[10] 陈虎, 叶英, 秦艳婷, 等. 黑果枸杞花青素在水相体系中的稳定性研究[J]. 食品工业科技, 2016, 37(19): 127-131.
[11] Xia E H, Zhang H B, Sheng J, et al.The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis[J]. Mol Plant, 2017, 10(6): 866-877.
[12] TRAPNELL C, WILLIAMS B A, PERTEA G, et al.Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation[J]. Nat Biotechnol, 2010, 28(5): 511-515.
[13] MCKENNA A, HANNA M, BANKS E, et al.The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data[J]. Genome Res, 2010, 20(9): 1297-1303.
[14] ANDERS S, HUBER W.Differential expression analysis for sequence count data[J]. Genome Biol, 2010, 11(10): R106.
[15] WANG Y S, GAO L P, SHAN Y, et al.Influence of shade on flavonoid biosynthesis in tea (Camellia sinensis (L.) O. Kuntze)[J]. Sci Hortic, 2012, 141(3): 7-16.
[16] 周琼琼, 孙威江. 茶树芽叶紫化的生理生化分析及其关键酶基因的表达[J]. 生物技术通报, 2015, 31(1): 86-91.
[17] 周天山, 王新超, 余有本, 等. 紫芽茶树类黄酮生物合成关键酶基因表达与总儿茶素、花青素含量相关性分析[J]. 作物学报, 2016, (4): 525-531.
[18] 范晶, 黄明远, 吴苗苗, 等. 山茶属三个F3H基因的分子特性、系统进化及蛋白结构差异分析[J]. 基因组学与应用生物学, 2016, 35(5): 1195-1205.
[19] LI B F, HE X J, ZHANG S, et al.Efficient synthesis of 4-O-β-D-glucopyranosylferulic acid from ferulic acid by whole cells harboring glycosyltransferase GTBP1[J]. Biochem Eng J, 2018, 130(15): 99-103.
[20] RYU J, EOM M S, KO W, et al.A fluorescence-based glycosyltransferase assay for high-throughput screening[J]. Bioorg Med Chem, 2014, 22(8): 2571-2575.
[21] 王晓帆, 田艳维, 王云生, 等. 茶树类黄酮3-O-葡萄糖基转移酶基因的克隆和表达分析[J]. 茶叶科学, 2012, 32(5): 411-418.
[22] NAKATSUKA T, SATO K, TAKAHASHI H, et al.Cloning and characterization of the UDP-glucose: anthocyanin 5-O-glucosyltransferase gene from blue-flowered gentian[J]. J Exp Bot, 2008, 59(6): 1241-1252.
[23] SAWADA S Y, SUZUKI H, ICHIMAIDA F, et al.UDP-glucuronic acid:anthocyanin glucuronosyltransferase from red daisy (Bellis perennis) flowers enzymology and phylogenetics of a novel glucuronosyltransferase involved in flower pigment biosynthesis[J]. The Journal of biological chemistry, 2005, 280(2): 899-906.
[24] 杜灵娟, 陈凯利, 刘雅莉. 葡萄风信子FLS1基因克隆及其表达与花色性状之间的关联性分析[J]. 西北林学院学报, 2017, 32(1): 106-113.
[25] 石海燕, 张玉星. 木质素生物合成途径中关键酶基因的分子特征[J]. 中国农学通报, 2011, 27(5): 288-291.
[26] LI H Y, YANG Y, WANG Z J, et al.BpMADS12 gene role in lignin biosynthesis of Betula platyphylla Suk by transcriptome analysis[J]. J For Res, 2016, 27(5): 1111-1120.
[27] 任鸿雁, 王莉, 马青秀, 等. 油菜素内酯生物合成途径的研究进展[J]. 植物学报, 2015, 50(6): 768-778.
[28] YE H X, LI L, YIN Y H.Recent advances in the regulation of brassinosteroid signaling and biosynthesis pathways[J]. J Integr Plant Biol, 2011, 53(6): 455-468.
[29] PENG Z H, HAN C Y, YUAN L B, et al.Brassinosteroid enhances jasmonate-induced anthocyanin accumulation in Arabidopsis seedlings[J]. J Integr Plant Biol, 2011, 53(8): 632-640.
[30] XIE Y, TAN H J, MA Z X, et al.DELLA proteins promote anthocyanin biosynthesis via sequestering MYBL2 and JAZ suppressors of the MYB/bHLH/WD40 complex in Arabidopsis thaliana[J]. Mol Plant, 2016, 9(5): 711-721.
[1] 李茂福, 杨媛, 王华, 等. 月季bHLH基因的克隆、表达及其与MYB和WD40的互作分析[J]. 园艺学报, 2017, 44(10): 1949-1958.