[1] 郭元超. 茶树茸毛的形态特征与演化特点[J]. 茶叶科学简报, 1993(3): 1-4. Guo Y C.The morphological characteristics and evolution characteristics of tea tree trichomes[J]. Chaye Kexue Jianbao, 1993(3): 1-4. [2] Cao H L, Li J M, Ye Y J, et al.Integrative transcriptomic and metabolic analyses provide insights into the role of trichomes in tea plant (Camellia Sinensis)[J]. Biomolecules, 2020, 10(2): 311. doi:10.3390/biom10020311. [3] Li P H, Xu Y J, Zhang Y R, et al.Metabolite profiling and transcriptome analysis revealed the chemical contributions of tea trichomes to tea flavors and tea plant defenses[J]. Journal of Agricultural and Food Chemistry, 2020, 68(41): 11389-11401. [4] 张明露, 雷睿勇, 邓春梅. 茶毫对茶叶品质的影响分析[J]. 贵茶, 2023(1): 28-31. Zhang M L, Lei R Y, Deng C M.Analysis of the influence of Tea Hairs on the quality of tea[J]. Journal of Guizhou Tea, 2023(1): 28-31. [5] 王舒婷, 曲凤凤, 张新富, 等. 基于电子鼻技术的白茶毫香研究[J]. 青岛农业大学学报(自然科学版), 2020, 37(4): 258-263. Wang S T, Qu F F, Zhang X F, et al.Study on the fragrance of white tea hairs based on electronic nose technology[J]. Journal of Qingdao Agricultural University (Natural Science), 2020, 37(4): 258-263. [6] 中华人民共和国国家质量监督检验检疫总局、中国国家标准化管理委员会. 茶叶感官审评术语: GB/T 14487—2017[S]. 北京: 中国标准出版社, 2017. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China (AQSIQ), Standardization Administration of China (SAC). Tea vocabulary for sensory evaluation: GB/T 14487—2017 [S]. Beijing: China Standard Press, 2015. [7] Zhu H K, Ye Y, He H F, et al.Evaluation of green tea sensory quality via process characteristics and image information[J]. Food and Bioproducts Processing, 2017, 102: 116-222. [8] Galmarini M V.The role of sensory science in the evaluation of food pairing[J]. Current Opinion in Food Science, 2020, 33: 149-155. [9] 胡梦芹. 茶毫发育调控的分子基础研究[D]. 长沙: 湖南农业大学, 2021. Hu M Q.Studies on molecular basis of the regulation of trichome formation in tea plant (Camellia sinensis L.) [D]. Changsha: Hunan Agricultural University, 2021. [10] 宋亚康, 张群峰, 张洁, 等. 茶毫氨基酸组成及矿质元素分析[J]. 茶叶科学, 2017, 37(4): 339-346. Song Y K, Zhang Q F, Zhang J, et al.Study on amino acids composition and mineral elements of tea hairs[J]. Journal of Tea Science, 2017, 37(4): 339-346. [11] Morris T.Computer vision and image processing[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1992, 48(2): 24-25. [12] Borianne P, Sarron J, Borne F, et al.Deep mango cultivars: cultivar detection by classification method with maximum misidentification rate estimation[J]. Precision Agriculture, 2023, 24(4): 1619-1637. [13] Hou L X, Liu Z Y, You J X, et al.Tomato sorting system based on machine vision[J]. Electronics, 2024, 13(11): 2114. doi:10.3390/electronics13112114. [14] Gill G S, Kumar A, Agarwal R.Monitoring and grading of tea by computer vision: a review[J]. Journal of Food Engineering, 2011, 106(1): 13-19. [15] 邱晓莹, 曹思宇, 陈昊东, 等. 黄金芽与群体种制成条形、螺形红茶的颜色空间数字化分析[J]. 浙江农业科学, 2024, 65(6): 1445-1450. Qiu X Y, Cao S Y, Chen H D, et al.Digital analysis of the color space of strip and spiral-shaped black tea made from Huangjinya and population resources[J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(6): 1445-1450. [16] Pal N R, Pal S K.A review on image segmentation techniques[J]. Pattern Recognit, 1993, 26(9): 1277-1294. [17] 章展熠, 张宝荃, 王周立, 等. 多茶类CNN图像识别的数据增强优化及类激活映射量化评价[J]. 茶叶科学, 2023, 43(3): 411-423. Zhang Z Y, Zhang B Q, Wang Z L, et al.Data enhancement optimization and class activation mapping quantitative evaluation for cnn image recognition of multiple tea categorie[J]. Journal of Tea Science, 2023, 43(3): 411-423. [18] 甘密, 汪飞, 沈强, 等. 基于图像处理的茶叶识别方法研究[J]. 贵茶, 2022(2): 28-32. Gan M, Wang F, Shen Q, et al.Research on tea recognition method based on image processing[J]. Journal of Guizhou Tea, 2022(2): 28-32. [19] Ding L, Zhang Y P, Zhang X Y, et al.A survey of image segmentation techniques and performance evaluation[J]. Computer Engineering and Software, 2010, 31(12): 78-83. [20] Chen W, Shi Y Q, Xuan G R.Identifying computer graphics using HSV color model and statistical moments of characteristic functions[C]//IEEE. Proceedings of the IEEE International Conference on Multimedia and Expo, 2007: 1123-1126. [21] Zhao B J, Wei D, Sun W Z, et al.Research on tea bud identification technology based on HSI/HSV color transformation[C]//IEEE. Proceedings of the International Conference on Information Science and Control Engineering, 2019: 511-515. [22] Shelhamer E, Long J, Darrell T.Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651. [23] 熊俊涛, 卜榕彬, 郭文韬, 等. 自然光照条件下采摘机器人果实识别的表面阴影去除方法[J]. 农业工程学报, 2018, 34(22): 147-154. Xiong J T, Bu R B, Guo W T, et al.Shadow removal method of fruits recognized by picking robot under natural environment[J]. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(22): 147-154. [24] 周兵, 谭卓昆, 段红星, 等. 基于GA-BP算法的红茶色泽分类研究[J]. 福建茶叶, 2022, 44(2): 15-17. Zhou B, Tan Z K, Duan H X, et al.Study on color classification of black tea based on GA-BP algorithm[J]. Tea in Fujian, 2022, 44(2): 15-17. [25] 金美霞, 陈晓阳, 王霆, 等. 木禾种红茶不同工艺色泽品质的多维度比较[J]. 浙江农业科学, 2021, 62(8): 1603-1607. Jin M X, Chen X Y, Wang T, et al.Multi-dimensional comparative study on color quality of ‘Muhezhong’ black tea produced by different processes[J]. Journal of Zhejiang Agricultural Sciences, 2021, 62(8): 1603-1607. [26] 冯云丛. 基于信息融合的医学图像阈值分割及评价方法研究[D]. 长春: 吉林大学, 2017. Feng Y C.Research on medical image threshold segmentation and evaluation methods based on information fusion [D]. Changchun: Jilin University, 2017. [27] 杨会芳. 基于计算机视觉的鲜茶叶识别与分类系统研究[D]. 重庆: 重庆三峡学院, 2024. Yang H F.Research on fresh tea leaf recognition and classification system based on computer vision [D]. Chongqing: Chongqing Three Gorges University, 2024. [28] 张昆明. 基于YOLOv4的自然环境下猴魁茶树芽叶采摘点的三维定位[D]. 合肥: 安徽农业大学, 2022. Zhang K M.Three-Dimensional localization of Monkey King Tea shoot picking points in natural environment based on YOLOv4 [D]. Hefei: Anhui Agricultural University, 2022. [29] 郑明君. 基于机器学习的雪茄烟草种植数字化关键技术研究[D]. 泰安: 山东农业大学, 2024. Zheng M J.Research on digital key technologies for cigar tobacco cultivation based on machine learning [D]. Tai'an: Shandong Agricultural University, 2024. [30] Zhang L, Zou L, Wu C Y, et al.Method of famous tea sprout identification and segmentation based on improved watershed algorithm[J]. Computers and Electronics in Agriculture, 2021, 184(1): 106108. doi:10.1016/j.compag. 2021.106108. [31] 胡程喜, 谭立新, 王文胤, 等. 基于改进DeepLabV3+的轻量化茶叶嫩芽采摘点识别模型[J]. 智慧农业(中英文), 2024, 6(5): 119-127. Hu C X, Tan L X, Wang W Y, et al.Lightweight tea bud picking point recognition model based on improved DeepLabV3+[J]. Smart Agriculture, 2024, 6(5): 119-127. [32] Zou K, Ge L, Zhou H, et al.An apple image segmentation method based on a color index obtained by a genetic algorithm[J]. Multimedia Tools and Applications, 2022, 81(6): 8139-8153. [33] 周任虎, 席家新, 丁以纾, 等. 基于K-means聚类算法的烘烤烟叶图像分割研究[J]. 安徽农业科学, 2024, 52(19): 232-237. Zhou R H, Xi J X, Ding Y S, et al.Research on image segmentation of flue-cured tobacco leaf based on K-means clustering algorithm[J]. Journal of Anhui Agricultural Sciences, 2024, 52(19): 232-237. [34] 中华人民共和国国家质量监督检验检疫总局、中国国家标准化管理委员会. 红茶第2部分: 工夫红茶: GB/T 13738.2—2017[S]. 北京: 中国标准出版社, 2017. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China (AQSIQ), Standardization Administration of China (SAC). Black tea—Part 2: Congou black tea: GB/T 13738.2—2017 [S]. Beijing: China Standard Press, 2017. [35] 中华全国供销合作总社. 祁门工夫红茶: GH/T 1178—2019[S]. 北京: 中国标准出版社, 2019. All China Federation of Supply and Marketing Cooperatives. KEEMUN Congou Black tea: GH/T 1178—2019 [S]. Beijing: China Standard Press, 2019. [36] Zhu H, Ye Y, He H, et al.Evaluation of green tea sensory quality via process characteristics and image information[J]. Food and Bioproducts Processing, 2017, 102: 116-222. [37] 李晶. 福建红茶品质特征研究与综合评价[D]. 福州: 福建农林大学, 2023. Li J.Research and comprehensive evaluation of quality characteristics of Fujian black tea [D]. Fuzhou : Fujian Agriculture and Forestry University, 2023. [38] 赵磊. 茶叶拼配过程中的若干机器学习方法研究[D]. 合肥: 安徽农业大学, 2023. Zhao L.Research on several machine learning methods in the process of tea blending [D]. Hefei: Anhui Agricultural University, 2023. [39] 孙彬妹, 刘少群, 刘任坚, 等. 茶树茸毛的研究进展[J]. 茶叶通讯, 2018, 45(4): 3-6. Sun B M, Liu S Q, Liu R J, et al.Research progress of tea tree hairs[J]. Journal of Tea Communication, 2018, 45(4): 3-6. [40] 圣阳. 基于红外光谱和拉曼光谱技术的茶叶品质研究[D]. 南京: 南京林业大学, 2022. Sheng Y.Research on tea quality based on infrared and raman spectroscopy techniques [D]. Nanjing: Nanjing Forestry University, 2022. [41] 尹鹏, 刘威, 王广铭, 等. 茶树芽叶茸毛及茶毫研究进展[J]. 河南农业, 2016(27): 44-46. Yin P, Liu W, Wang G M, et al.Research progress of tea bud leaf hair and tea hair[J]. Agriculture of Henan, 2016(27): 44-46. |