[1] 涂良剑, 林用松, 黄学敏, 等. 高EGCG茶树品系杂交技术研究[J]. 茶叶科学, 2012, 32(5): 426-431.
[2] Park S Y, Lee Y K, Kim Y M, et al.Control of AMP-activated protein kinase, akt, and mtor in EGCG-treated ht-29 colon cancer cells[J]. Food Science & Biotechnology, 2013, 22(1): 147-151.
[3] 柳敏,饶国武,华允芬. EGCG衍生物合成及药理活性研究进展[J]. 茶叶科学, 2016, 36(2): 119-130.
[4] Ortsäter H, Grankvist H, Wolfram S, et al.Diet supplementation with green tea extract epigallocatechin gallate prevents progression to glucose intolerance indb/db mice[J]. Nutrition & Metabolism, 2012, 9(1): 11-11
[5] Luo X B, Rongfa Guan, Chen X Q, et al.Optimization on condition of epigallocatechin- 3-gallate (EGCG) nanoliposomes by response surface methodology and cellular uptake studiesin Caco-2 cells[J]. Nanoscale Research Letters, 2014, 9(1): 1-9.
[6] Punyasiri P A, Abeysinghe I S,Kumar V, et al.Flavonoid biosynthesis in the tea plant properties of enzymes of the prominent epicatechin and catechin pathways[J]. Arch Biochem Biophys, 2004, 431(1): 22-30.
[7] Wei K, Wang L, Zhou J, et al.Catechin contents in tea(Camellia sinensis) as affected by cultivar and environmentand their relation to chlorophyll contents[J]. Food Chemistry, 2011, 125(1): 44-48.
[8] Dubos C, Stracke R, Grotewold E, et al.MYB transcription factors in Arabidopsis[J]. Trends in Plant Science, 2010, 15(10): 573-581.
[9] Riechmann J L, Heard J, Martin G, et al.Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes[J]. Science, 2000, 290(5499): 2105-2110.
[10] 李宗艳, 李名扬. 调控植物类黄酮生物合成的转录因子研究进展[J]. 南京林业大学学报, 2011, 35(5): 129-133.
[11] Li C, Ng K Y, Fan L M.MYB transcription factors, active players in abiotic stress signaling[J]. Environmental and Experimental Botany, 2015, 114(6): 80-91.
[12] Ranjan R, Gupta D.Introduction to Plant Promoter[J]. Saarbrücken: Lambert Academic Publication; 2016: 149.
[13] Chow C N, Zheng H Q, Wu N Y, et al.PlantPAN 2.0: an update of plant promoter analysis navigator for reconstructing transcriptional regulatory networks in plants[J]. Nucleic Acids Research, 2016, 44(D1): D1154-D1160.
[14] 雒雅婧, 李杰, 张爽, 等. 植物启动子研究进展[J]. 北方园艺,2015, 39(22): 186-189.
[15] Smale S T, Kadonaga J T.The rna polymerase II core promoter[J]. Annual Review of Biochemistry, 2003, 72(1): 449-479.
[16] Lin J, Wilson I W, Ge G, et al.Whole transcriptome analysis of three leaf stages in two cultivars and one of their F1, hybrid of Camellia sinensis L. with differing EGCG content[J]. Tree Genetics & Genomes, 2017, 13(1): 13-27.
[17] Zheng S, Lin Y, Lai Z, et al.Isolation and characterisation of a MYB transcription factor associated with epigallocatechin-3-gallate biosynthesis in Camellia sinensis L[J]. The Journal of Horticultural Science and Biotechnolo- gy, https://doi.org/10.1080/14620316.2018.1454863.
[18] 丁晓东, 吕柳新. 从顽拗植物荔枝中提取基因组DNA技术的研究[J]. 应用与环境生物学报, 2000, 6(2): 142-145.
[19] Zhang M, Wang S, Yin J, et al.Molecular cloning and promoter analysis of squalene synthase and squalene epoxidase genes from Betula platyphylla[J].Protoplasma, 2016, 253(5): 1-17.
[20] Wang X Q, Shen X, Yun-Mian H E, et al. An optimized freeze-thaw method for transfo- rmation of Agrobacterium Tumefaciens EHA105 and LBA4404[J]. Pharmaceutical Biotechnology, 2011, 18(5): 382-386.
[21] Li Y and Zhang Y S. Study on agrobacterium tumefaciens-mediated transient transformation of tobacco by infiltration[J]. Experimental Technology & Management, 2010, 27(11): 50-52.
[22] Jefferson R A, Kavanagh T A, Bevan M W.GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants[J]. Embo Journal, 1987, 6(6): 3901-3907.
[23] Bo H.GSDS 2.0: an upgraded gene feature visualization server[J]. Bioinformattics, 2015, 31(8): 1296-1297.
[24] Benjamin L. Genes Ⅶ [M], Oxford University, 2000 chapter 22 (in English).
[25] .李田, 孙景宽, 刘京涛. 植物启动子研究进展[J]. 生物技术通报,2015, 31(2): 18-25.
[26] 胡廷章, 罗凯, 甘丽萍, 等. 植物基因启动子的类型及其应用[J]. 湖北农业科学, 2007, 46(1): 149-151.
[27] Santner A, Calderonvillalobos L I, Estelle M.Plant hormones are versatile chemical regulators of plant growth[J]. Nature Chemical Biology, 2009, 5(5): 301-307.
[28] Shigenaga A M, Argueso C T.No hormone to rule them all: interactions of plant hormones during the responses of plants to pathogens[J]. Seminars in Cell & Developmental Biology, 2016, 56: 174-189.
[29] 杨亚军, 郑雷英, 王新超. 冷驯化和ABA对茶树抗寒力及其体内脯氨酸含量的影响[J]. 茶叶科学, 2004, 24(3): 177-182.
[30] Mundy J, Yamaguchi-Shinozaki K, Chua N H.Nuclear proteins bind conserved elements in the abscisic acid-responsive promoter of a rice rab gene[J]. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(4): 1406-1410.
[31] Shaddad M A K, Abd E S H M, Mostafa D. Role of gibberellic acid (GA3) in improving salt stress tolerance of two wheat cultivars[J]. International Journal of Plant Physiology & Biochemistry, 2013, 5(4): 50-57.
[32] Manan A, Ayyub C M, Pervez M A, et al.Methyl jasmonate brings about resistance against salinity stressed tomato plants by altering biochemical and physiological processes[J]. Pakistan Journal of Agricultural Sciences, 2016, 53(1): 35-41.
[33] Nambara E, Kuchitsu K.Opening a new era of ABA research[J]. Journal of Plant Research, 2011, 124(4): 431-435.
[34] Fahad S, Hussain S, Matloob A, et al.Phytohormones and plant responses to salinity stress:a review[J]. Plant Growth Regulation, 2015, 75(2): 391-404.
[35] 陈娜, 迟晓元, 潘丽娟, 等. MYB转录因子在植物盐胁迫调控中的研究进展[J]. 植物生理学报, 2015, 51(9): 1395-1399.
[36] Casaretto J A, El-Kereamy A, Zeng B, et al.Expression of OsMYB55 in maize activates stress-responsive genes and enhances heat and drought tolerance[J]. BMC Genomics, 2016, 17(1): 312-326.
[37] Liao Y, Zou H F, Wang H W,et al.Soybean GmMYB76, GmMYB92, and GmMYB177 genes confer stress tolerance in transgenic Arabidopsis plants[J]. Cell Research, 2008, 18(10): 1047-1060.
[38] Yamaguchi-Shinozaki K, Shinozaki K.A novel cis-acting element in an arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress[J]. Plant Cell, 1994, 6(2): 251-264.
[39] Abe H, Urao T, Ito T, et al.Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling[J]. Plant Cell, 2003, 15(1): 63-78.