欢迎访问《茶叶科学》,今天是

茶树CsMYB基因启动子的克隆与功能分析

  • 郑世仲 ,
  • 江胜滔 ,
  • 刘伟 ,
  • 陈美霞 ,
  • 林玉玲 ,
  • 赖钟雄 ,
  • 林金科
展开
  • 1. 宁德师范学院生命科学学院,福建 宁德 352100;
    2. 闽东特色生物资源福建省高校工程研究中心,福建 宁德 352100;
    3. 福建农林大学园艺植物生物工程研究所,福建 福州350002;
    4. 福建农林大学安溪茶学院,福建 福州350002
郑世仲,男,博士,主要研究茶树生物技术,Email: zhengshizhong@126.com。

收稿日期: 2018-06-07

  修回日期: 2018-08-09

  网络出版日期: 2019-12-15

基金资助

自然科学基金(31170651)、福建省“2011协同创新中心”中国乌龙茶产业协同创新中心专项(闽教科[2015]75号)

Cloning and Functional Analysis of the CsMYB Promoter In Tea Plant (Camellia sinensis L.)

  • ZHENG Shizhong ,
  • JIANG Shengtao ,
  • LIU Wei ,
  • CHEN Meixia ,
  • LIN Yuling ,
  • LAI Zhongxiong ,
  • LIN Jinke
Expand
  • 1. College of Life Science, Ningde Normal University, Ningde 352100, China;
    2. Institute of Fujian Higher Education for Local Bio-resources in Ningde City, Ningde 352100, China;
    3. Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
    4. Anxi College of Tea Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China

Received date: 2018-06-07

  Revised date: 2018-08-09

  Online published: 2019-12-15

摘要

以茶树新品系“1005”嫩芽为材料,克隆得到CsMYB基因gDNA全长序列1β828βbp,通过染色体步移技术,分离得到CsMYB基因启动子片段1β038βbp,命名为proMYB。生物信息学分析表明,CsMYB gDNA由2个内含子和3个外显子组成,该启动子含有与提高基因转录水平相关的5′UTR Py-rich stretch顺式作用元件、启动子核心元件TATA-box和CAAT-box,还存在有激素响应元件、光响应元件、逆境应答元件以及大量功能未知或功能特异的顺式作用元件,说明proMYB具有诱导型启动子特性,CsMYB基因在茶树植物体中可能参与多种非生物胁迫应答和激素信号传导;通过烟草的瞬时表达结果表明,该启动子能驱动下游基因表达,具有启动子活性。

本文引用格式

郑世仲 , 江胜滔 , 刘伟 , 陈美霞 , 林玉玲 , 赖钟雄 , 林金科 . 茶树CsMYB基因启动子的克隆与功能分析[J]. 茶叶科学, 2018 , 38(6) : 580 -588 . DOI: 10.13305/j.cnki.jts.2018.06.004

Abstract

The 1β828βbp full-length gDNA of CsMYB and a 1β038βbp 5′-flanking sequence of CsMYB (named proMYB) were cloned from the shoots of tea cultivar ‘1005’by gDNA cloning and genome-walking method. Bioinformatics analysis showed that the gDNA of CsMYB contained 2 introns and 3 extrons. The cis-acting element analysis showed that the proMYB promoter contained 5′-UTR Py-rich stretch motifs, TATA-box, CAAT-box core elements putative elements responding to hormone, light, stresses and some cis-elements with unknown or specific function, suggesting the inducible character of proMYB. It was also implied that CsMYB might be involved in abiotic stress responses and hormonal signal transduction in tea plant. The transient expression in transformed tobacco showed that the proMYB could drive the expressions of downstream genes.

参考文献

[1] 涂良剑, 林用松, 黄学敏, 等. 高EGCG茶树品系杂交技术研究[J]. 茶叶科学, 2012, 32(5): 426-431.
[2] Park S Y, Lee Y K, Kim Y M, et al.Control of AMP-activated protein kinase, akt, and mtor in EGCG-treated ht-29 colon cancer cells[J]. Food Science & Biotechnology, 2013, 22(1): 147-151.
[3] 柳敏,饶国武,华允芬. EGCG衍生物合成及药理活性研究进展[J]. 茶叶科学, 2016, 36(2): 119-130.
[4] Ortsäter H, Grankvist H, Wolfram S, et al.Diet supplementation with green tea extract epigallocatechin gallate prevents progression to glucose intolerance indb/db mice[J]. Nutrition & Metabolism, 2012, 9(1): 11-11
[5] Luo X B, Rongfa Guan, Chen X Q, et al.Optimization on condition of epigallocatechin- 3-gallate (EGCG) nanoliposomes by response surface methodology and cellular uptake studiesin Caco-2 cells[J]. Nanoscale Research Letters, 2014, 9(1): 1-9.
[6] Punyasiri P A, Abeysinghe I S,Kumar V, et al.Flavonoid biosynthesis in the tea plant properties of enzymes of the prominent epicatechin and catechin pathways[J]. Arch Biochem Biophys, 2004, 431(1): 22-30.
[7] Wei K, Wang L, Zhou J, et al.Catechin contents in tea(Camellia sinensis) as affected by cultivar and environmentand their relation to chlorophyll contents[J]. Food Chemistry, 2011, 125(1): 44-48.
[8] Dubos C, Stracke R, Grotewold E, et al.MYB transcription factors in Arabidopsis[J]. Trends in Plant Science, 2010, 15(10): 573-581.
[9] Riechmann J L, Heard J, Martin G, et al.Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes[J]. Science, 2000, 290(5499): 2105-2110.
[10] 李宗艳, 李名扬. 调控植物类黄酮生物合成的转录因子研究进展[J]. 南京林业大学学报, 2011, 35(5): 129-133.
[11] Li C, Ng K Y, Fan L M.MYB transcription factors, active players in abiotic stress signaling[J]. Environmental and Experimental Botany, 2015, 114(6): 80-91.
[12] Ranjan R, Gupta D.Introduction to Plant Promoter[J]. Saarbrücken: Lambert Academic Publication; 2016: 149.
[13] Chow C N, Zheng H Q, Wu N Y, et al.PlantPAN 2.0: an update of plant promoter analysis navigator for reconstructing transcriptional regulatory networks in plants[J]. Nucleic Acids Research, 2016, 44(D1): D1154-D1160.
[14] 雒雅婧, 李杰, 张爽, 等. 植物启动子研究进展[J]. 北方园艺,2015, 39(22): 186-189.
[15] Smale S T, Kadonaga J T.The rna polymerase II core promoter[J]. Annual Review of Biochemistry, 2003, 72(1): 449-479.
[16] Lin J, Wilson I W, Ge G, et al.Whole transcriptome analysis of three leaf stages in two cultivars and one of their F1, hybrid of Camellia sinensis L. with differing EGCG content[J]. Tree Genetics & Genomes, 2017, 13(1): 13-27.
[17] Zheng S, Lin Y, Lai Z, et al.Isolation and characterisation of a MYB transcription factor associated with epigallocatechin-3-gallate biosynthesis in Camellia sinensis L[J]. The Journal of Horticultural Science and Biotechnolo- gy, https://doi.org/10.1080/14620316.2018.1454863.
[18] 丁晓东, 吕柳新. 从顽拗植物荔枝中提取基因组DNA技术的研究[J]. 应用与环境生物学报, 2000, 6(2): 142-145.
[19] Zhang M, Wang S, Yin J, et al.Molecular cloning and promoter analysis of squalene synthase and squalene epoxidase genes from Betula platyphylla[J].Protoplasma, 2016, 253(5): 1-17.
[20] Wang X Q, Shen X, Yun-Mian H E, et al. An optimized freeze-thaw method for transfo- rmation of Agrobacterium Tumefaciens EHA105 and LBA4404[J]. Pharmaceutical Biotechnology, 2011, 18(5): 382-386.
[21] Li Y and Zhang Y S. Study on agrobacterium tumefaciens-mediated transient transformation of tobacco by infiltration[J]. Experimental Technology & Management, 2010, 27(11): 50-52.
[22] Jefferson R A, Kavanagh T A, Bevan M W.GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants[J]. Embo Journal, 1987, 6(6): 3901-3907.
[23] Bo H.GSDS 2.0: an upgraded gene feature visualization server[J]. Bioinformattics, 2015, 31(8): 1296-1297.
[24] Benjamin L. Genes Ⅶ [M], Oxford University, 2000 chapter 22 (in English).
[25] .李田, 孙景宽, 刘京涛. 植物启动子研究进展[J]. 生物技术通报,2015, 31(2): 18-25.
[26] 胡廷章, 罗凯, 甘丽萍, 等. 植物基因启动子的类型及其应用[J]. 湖北农业科学, 2007, 46(1): 149-151.
[27] Santner A, Calderonvillalobos L I, Estelle M.Plant hormones are versatile chemical regulators of plant growth[J]. Nature Chemical Biology, 2009, 5(5): 301-307.
[28] Shigenaga A M, Argueso C T.No hormone to rule them all: interactions of plant hormones during the responses of plants to pathogens[J]. Seminars in Cell & Developmental Biology, 2016, 56: 174-189.
[29] 杨亚军, 郑雷英, 王新超. 冷驯化和ABA对茶树抗寒力及其体内脯氨酸含量的影响[J]. 茶叶科学, 2004, 24(3): 177-182.
[30] Mundy J, Yamaguchi-Shinozaki K, Chua N H.Nuclear proteins bind conserved elements in the abscisic acid-responsive promoter of a rice rab gene[J]. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(4): 1406-1410.
[31] Shaddad M A K, Abd E S H M, Mostafa D. Role of gibberellic acid (GA3) in improving salt stress tolerance of two wheat cultivars[J]. International Journal of Plant Physiology & Biochemistry, 2013, 5(4): 50-57.
[32] Manan A, Ayyub C M, Pervez M A, et al.Methyl jasmonate brings about resistance against salinity stressed tomato plants by altering biochemical and physiological processes[J]. Pakistan Journal of Agricultural Sciences, 2016, 53(1): 35-41.
[33] Nambara E, Kuchitsu K.Opening a new era of ABA research[J]. Journal of Plant Research, 2011, 124(4): 431-435.
[34] Fahad S, Hussain S, Matloob A, et al.Phytohormones and plant responses to salinity stress:a review[J]. Plant Growth Regulation, 2015, 75(2): 391-404.
[35] 陈娜, 迟晓元, 潘丽娟, 等. MYB转录因子在植物盐胁迫调控中的研究进展[J]. 植物生理学报, 2015, 51(9): 1395-1399.
[36] Casaretto J A, El-Kereamy A, Zeng B, et al.Expression of OsMYB55 in maize activates stress-responsive genes and enhances heat and drought tolerance[J]. BMC Genomics, 2016, 17(1): 312-326.
[37] Liao Y, Zou H F, Wang H W,et al.Soybean GmMYB76, GmMYB92, and GmMYB177 genes confer stress tolerance in transgenic Arabidopsis plants[J]. Cell Research, 2008, 18(10): 1047-1060.
[38] Yamaguchi-Shinozaki K, Shinozaki K.A novel cis-acting element in an arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress[J]. Plant Cell, 1994, 6(2): 251-264.
[39] Abe H, Urao T, Ito T, et al.Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling[J]. Plant Cell, 2003, 15(1): 63-78.
文章导航

/