欢迎访问《茶叶科学》,今天是

茶树富集铝的特点及耐铝机制研究进展

  • 黄丹娟 ,
  • 毛迎新 ,
  • 陈勋 ,
  • 谭荣荣 ,
  • 王红娟 ,
  • 王友平 ,
  • 龚自明
展开
  • 1. 湖北省农业科学院果树茶叶研究所,湖北 武汉 430064;
    2. 湖北省农业科学院植保土肥研究所,湖北 武汉 430064
黄丹娟,女,研究实习员,主要从事茶树栽培与生理生化研究。

收稿日期: 2017-08-22

  修回日期: 2017-10-24

  网络出版日期: 2019-08-28

基金资助

国家重点研发计划(2016YFD0200900)、国家茶叶产业技术体系鄂东南综合试验站(CARS-19)、湖北省农业科技创新中心团队项目(2016-620-000-001-032)、湖北省农科院青年科学基金(2018NKYJJ11)

Advances in Aluminum Accumulation and Tolerance Mechanisms in Tea Plant (Camellia sinensis)

  • HUANG Danjuan ,
  • MAO Yingxin ,
  • CHEN Xun ,
  • TAN Rongrong ,
  • WANG Hongjuan ,
  • WANG Youping ,
  • GONG Ziming
Expand
  • 1. Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430064, China;
    2. Institute of Plant Protection, Soil and Fertilizers, Hubei Academy of Agricultural Sciences, Wuhan 430064, China

Received date: 2017-08-22

  Revised date: 2017-10-24

  Online published: 2019-08-28

摘要

茶树是一种富集铝的植物,体内的铝含量远远高于其他植物,却不表现出受害症状。本文对铝在茶树中的吸收、运输形式,铝在茶树中的含量和分布特点,铝对茶树生长发育的影响以及茶树耐铝机制4个方面的研究进展作了综述,同时对今后的研究方向作了简要讨论。

本文引用格式

黄丹娟 , 毛迎新 , 陈勋 , 谭荣荣 , 王红娟 , 王友平 , 龚自明 . 茶树富集铝的特点及耐铝机制研究进展[J]. 茶叶科学, 2018 , 38(2) : 125 -132 . DOI: 10.13305/j.cnki.jts.2018.02.002

Abstract

Tea plant is an aluminum (Al) hyper-accumulator with higher Al content than other plants, but no obvious damage symptoms. In this paper, aspects including the Al absorption, transportation, content and distribution characteristics in tea plant are reviewed. Furthermore, the influence of Al on the growth and development, the Al tolerance mechanism of tea plant are summarized. Meanwhile, future studies on aluminum tolerance mechanisms of tea plant are also briefly discussed.

参考文献

[1] Ma J F, Chen Z C, Shen RF.Molecular mechanisms of Al tolerance in gramineous plants[J]. Plant soil, 2014, 381: 1-12.
[2] Hajiboland R, Rad SB, Barcelo J, et al.Mechanisms of aluminum-induced growth stimulation in tea(Camellia sinensis)[J]. Journal of Plant Nutrition and Soil Science, 2013, 176: 616-625.
[3] Jacquie D S, Gabriel T, Zhao F J.Enviromental factors influencing aluminium accumulation in tea[J]. Plant soil, 2016, 400: 223-230.
[4] Ryan, P R, Tyerman, S D, Sasaki T, et al. The identification of aluminum-resistance genes provides opportunities for enhancing crop production on acid soils[J]. Journal of Experimental Botany, 2011, 62: 9-20.
[5] Nagata T, Haytsu M, Kosuge N.Aluminum kinetics in the tea plant using 27Al-NMR and 19F-NMR[J]. Phytochemsity, 1993, 32: 771-775.
[6] Morita A, Horie H, Fujii Y, et al.Chemical forms of aluminum in xylem sap of tea plants (Camellia sinensis L.)[J]. Phytochemistry, 2004, 65(20): 75-80.
[7] 刘艳丽, 金孝芳, 曹丹, 等. 茶树铝、氟富集研究进展[J]. 植物科学学报, 2016, 34(6): 972-977.
[8] 黄鑫, 宋晓维, 陈玉琼. 茶树吸收富集氟的机制研究进展[J]. 茶叶科学, 2016, 36(6): 551-556.
[9] 傅绍光. 铝氟交互下茶树铝迁移和转化的特征研究[D]. 金华: 浙江师范大学, 2009: 61-62.
[10] Nagata T, Haytsu M, Kosuge N.Identification of aluminum forms in tea leaves by 27 Al-NMR[J]. Phytochemsity, 1992, 31(4): 1215-1218.
[11] Githua M, Gathu N, Jane I M.Aas determination of aluminium leaves in tea and other plant grown in the same locality[J]. Journal of environmental science and health, 1995, 30(6): 1145-1154.
[12] 于翠平. 茶树耐铝的基因型差异及机理研究[D]. 杭州: 浙江大学, 2012: 31-34.
[13] 吴志丹, 江福英, 张磊. 茶树品种及采摘时期对茶叶铝含量的影响[J]. 茶叶学报, 2016, 57(1): 13-17.
[14] Fung K F, Carr H P, Poon B H T, et al. A comparison of aluminium levels in tea products from Hong Kong markets and in varieties of tea plants from Hong Kong and India[J]. Chemosphere, 2009, 75: 955-962.
[15] Gao H J, Zhao Q, Zhang X C, et al.Localization of fluoride and aluminum in subcellular fractions of tea leaves and roots[J]. Journal of Agricultural and Food Chemistry, 2014, 62(10): 2313-2319.
[16] Tolrà R, Vogel-Miku K, Hajiboland R, et al.Localization of aluminium in tea ( Camellia sinensis ) leaves using low energy X-ray fluorescence spectro-microscopy[J]. Journal of Plant Research, 2011, 124(1): 165-172.
[17] 王琼琼, 薛志慧, 陈志丹, 等. 不同茶树种质间氟铝元素积累特性的研究[J]. 热带作物学报, 2016, 37(5): 862-869.
[18] 黄嫒. 丘陵红壤区不同种植年限茶园土壤铝形态与茶树体铝分布格局[D]. 南昌: 南昌大学, 2011: 25.
[19] Tanmoy K, Indira S, Ranjit K P, et al.Aluminium dynamics from soil to tea plant(Camellia sinensis L.): Is it enhanced by municipal solid waste compost application?[J]. Chemosphere, 2015(119): 917-926.
[20] 王敏, 宁秋燕, 石元值. 茶树幼苗对不同浓度铝的生理响应差异研究[J]. 茶叶科学, 2017, 37(4): 337-346.
[21] 黄媛, 段小华, 胡小飞. 模拟酸雨和铝调控对茶叶主要化学品质与铝积累的影响[J]. 热带亚热带植物学报, 2011, 19(3): 254-259.
[22] 段小华, 胡小飞, 邓泽元. 茶叶主要化学品质指标和茶树体部分微量元素的钙铝调控效应[J]. 西北植物学报, 2012, 32(5): 988-994.
[23] Napaporn S L, Kerdchoechuen O, Laohakunjit N.Chemical qualities and phenolic compounds of Assam tea after soil drench application of selenium and aluminium[J]. Plant Soil, 2012, 356: 381-393.
[24] Ruan J Y, Zhang F S, Wong M H.Effect of nitrogen formand phosphorus source on the growth, nutrient intake and rhizosphere soil property of Camellia sinensis L.[J]. Plant and Soil, 2000, 223: 63-71.
[25] 李海生, 张志权. 不同铝水平下茶树对铝及矿质养分的吸收与累积[J]. 生态环境, 2007, 16(1): 186-190.
[26] Hajiboland R, Bahrami-rad S, Bastani S. Aluminum alleviates boron-deficiency induced growth impairment in tea plants[J]. Biologia Plantarum, 2014, 58(4): 717-724.
[27] Hajiboland R,Bastani S,Bahrami-Rad S, et al.Interactions between aluminum and boron in tea (Camellia sinensis) plants[J]. Acta physiologiae plantarum, 2015, 37(3): 1-13.
[28] Hajiboland R, Barceló J, Poschenrieder C, et al.Amelioration of iron toxicity: A mechanism for aluminum-induced growth stimulation in tea plants[J]. Journal of Inorganic Biochemistry, 2013, 128: 183-187.
[29] Yang Y, Liu Y, Huang C F, et al.Aluminium alleviates fluoride toxicity in tea (Camellia sinensis)[J]. Plant Soil, 2016, 402: 1-12.
[30] 张显晨, 郜红建, 张正竹, 等. 铝对氟在茶树体内吸收与分配的影响[J]. 食品科学, 2013, 34(5): 147-150.
[31] Zhang X C, Gao H J, Wu H H, et al.Ca2+ and CaM are involved in Al3+ pretreatment-promoted fluoride accumulation in tea plants (Camellia sinesis L.)[J]. Plant Physiology and Biochemistry, 2015, 96: 288-295.
[32] Zhang X C, Gao H J, Yang T Y, et al.Al3+-promoted fluoride accumulation in tea plants (Camellia sinensis) was inhibited by an anion channel inhibitor DIDS[J]. International Journal of Molecular Sciences, 2016, 17: 57-71.
[33] Xu Q S, Yu Y, Ding Z T, et al.Aluminum induced metabolic responses in two tea cultivars[J]. Plant Physiology and Biochemistry, 2016, 101: 162-172.
[34] Mukhopadyay M, Bantawa P, Das A, et al.Changes of growth, photosynthesis and alteration of leaf antioxidative defense system of tea [Camellia sinensis (L.) O. Kuntze] seedlings under aluminum stress[J]. Biometals, 2012, 25: 1141-1154.
[35] 李春雷, 倪德江. 铝对茶树光合特性和叶片超微结构的影响[J]. 湖北农业科学, 2014, 53(3): 604-606.
[36] Li C L, Xu H M, Xu J, et al.Effects of aluminium on ultrastructure and antioxidant activity in leaves of tea plant[J]. Acta Physiologiae Plantarum, 2011, 33: 973-978.
[37] Xu Q S, Yu Y, Ding Z T, et al.Aluminum induced physiological and proteomic responses in tea(Camellia sinensis) roots and leaves[J]. Plant Physiology and Biochemistry, 2017(115): 141-151.
[38] 陆建良, 梁月荣. 铝对茶树等植物超氧化物歧化酶的影响[J]. 茶叶科学, 1997, 17(2): 197-200.
[39] Morita A, Yanagisawa O, Takatsu S, et al.Mechanism for the detoxification of aluminum in roots of tea plant (Camellia sinensis (L.) Kuntze)[J]. Phytochemistry, 2008, 69(1): 147-153.
[40] Hajiboland R, Poschenrieder C.Localization and compartmentation of Al in the leaves and roots of tea plants[J]. Phyton, 2015, 84(1): 86-100.
[41] Marzena S R, Wojciech B.Pectins esterification in the apoplast of aluminum-treated pea root nodules[J]. Journal of Plant Physiology, 2015(184): 1-7.
[42] Li D Q, Shu Z F, Ye X L, et al.Cell wall pectin methyl-esterification and organic acids of root tips involve in aluminum tolerance in Camellia sinensis[J]. Plant Physiology and Biochemistry, 2017(119): 265-274.
[43] Zhu X F, Shi Y Z, Lei G J, et al.XTH31, encoding an in-vitro XEH/XET-active enzyme, regulates Al sensitivity by modulating in-vivo XET action, cell wall xyloglucan content and Al binding capacity in Arabidopsis[J]. Plant Cell, 2012, 24: 4731-4747.
[44] Ryan P R, Delhaize E.The convergent evolution of aluminium resistance in plants exploits a convenient currency[J]. Functional Plant Biology, 2010, 37(4): 275-284.
[45] Singh D, Chauhan S K.Organic acids of crop plants in aluminum detoxification[J]. Current Science, 2011, 100: 1509-1515.
[46] Yang L T, Qi Y P, Jiang H X, et al.Roles of organic acid anion secretion in aluminium tolerance of higher plants[J]. BioMed Research International, 2013: 173682.
[47] Morita A, Yanagisawa O, Maeda S, et al.Tea plant(Camellia sinensis L.) roots secrete oxalic acid and caffeine into medium containing aluminum[J]. Soil Science & Plant Nutrition, 2011(57): 796-802.
[48] 刘腾腾, 郜红建, 宛晓春, 等. 铝对茶树根细胞膜透性和根系分泌有机酸的影响[J]. 茶叶科学, 2011, 31(5): 458-462.
[49] Li Y, Huang J, Song X W, et al.An RNA-Seq transcriptome analysis revealing novel insights into aluminum tolerance and accumulation in tea plant[J]. Planta, 2017, 246: 91-103.
[50] Wang M L, Li Q H, Xin H H, et al.Reliable reference genes for normalization of gene expression data in tea plants (Camellia sinensis) exposed to metal stresses[J]. Plos one, 2017, 12(4): e0175863.
文章导航

/