[1] |
Ma J F, Chen Z C, Shen RF.Molecular mechanisms of Al tolerance in gramineous plants[J]. Plant soil, 2014, 381: 1-12.
|
[2] |
Hajiboland R, Rad SB, Barcelo J, et al.Mechanisms of aluminum-induced growth stimulation in tea(Camellia sinensis)[J]. Journal of Plant Nutrition and Soil Science, 2013, 176: 616-625.
|
[3] |
Jacquie D S, Gabriel T, Zhao F J.Enviromental factors influencing aluminium accumulation in tea[J]. Plant soil, 2016, 400: 223-230.
|
[4] |
Ryan, P R, Tyerman, S D, Sasaki T, et al. The identification of aluminum-resistance genes provides opportunities for enhancing crop production on acid soils[J]. Journal of Experimental Botany, 2011, 62: 9-20.
|
[5] |
Nagata T, Haytsu M, Kosuge N.Aluminum kinetics in the tea plant using 27Al-NMR and 19F-NMR[J]. Phytochemsity, 1993, 32: 771-775.
|
[6] |
Morita A, Horie H, Fujii Y, et al.Chemical forms of aluminum in xylem sap of tea plants (Camellia sinensis L.)[J]. Phytochemistry, 2004, 65(20): 75-80.
|
[7] |
刘艳丽, 金孝芳, 曹丹, 等. 茶树铝、氟富集研究进展[J]. 植物科学学报, 2016, 34(6): 972-977.
|
[8] |
黄鑫, 宋晓维, 陈玉琼. 茶树吸收富集氟的机制研究进展[J]. 茶叶科学, 2016, 36(6): 551-556.
|
[9] |
傅绍光. 铝氟交互下茶树铝迁移和转化的特征研究[D]. 金华: 浙江师范大学, 2009: 61-62.
|
[10] |
Nagata T, Haytsu M, Kosuge N.Identification of aluminum forms in tea leaves by 27 Al-NMR[J]. Phytochemsity, 1992, 31(4): 1215-1218.
|
[11] |
Githua M, Gathu N, Jane I M.Aas determination of aluminium leaves in tea and other plant grown in the same locality[J]. Journal of environmental science and health, 1995, 30(6): 1145-1154.
|
[12] |
于翠平. 茶树耐铝的基因型差异及机理研究[D]. 杭州: 浙江大学, 2012: 31-34.
|
[13] |
吴志丹, 江福英, 张磊. 茶树品种及采摘时期对茶叶铝含量的影响[J]. 茶叶学报, 2016, 57(1): 13-17.
|
[14] |
Fung K F, Carr H P, Poon B H T, et al. A comparison of aluminium levels in tea products from Hong Kong markets and in varieties of tea plants from Hong Kong and India[J]. Chemosphere, 2009, 75: 955-962.
|
[15] |
Gao H J, Zhao Q, Zhang X C, et al.Localization of fluoride and aluminum in subcellular fractions of tea leaves and roots[J]. Journal of Agricultural and Food Chemistry, 2014, 62(10): 2313-2319.
|
[16] |
Tolrà R, Vogel-Miku K, Hajiboland R, et al.Localization of aluminium in tea ( Camellia sinensis ) leaves using low energy X-ray fluorescence spectro-microscopy[J]. Journal of Plant Research, 2011, 124(1): 165-172.
|
[17] |
王琼琼, 薛志慧, 陈志丹, 等. 不同茶树种质间氟铝元素积累特性的研究[J]. 热带作物学报, 2016, 37(5): 862-869.
|
[18] |
黄嫒. 丘陵红壤区不同种植年限茶园土壤铝形态与茶树体铝分布格局[D]. 南昌: 南昌大学, 2011: 25.
|
[19] |
Tanmoy K, Indira S, Ranjit K P, et al.Aluminium dynamics from soil to tea plant(Camellia sinensis L.): Is it enhanced by municipal solid waste compost application?[J]. Chemosphere, 2015(119): 917-926.
|
[20] |
王敏, 宁秋燕, 石元值. 茶树幼苗对不同浓度铝的生理响应差异研究[J]. 茶叶科学, 2017, 37(4): 337-346.
|
[21] |
黄媛, 段小华, 胡小飞. 模拟酸雨和铝调控对茶叶主要化学品质与铝积累的影响[J]. 热带亚热带植物学报, 2011, 19(3): 254-259.
|
[22] |
段小华, 胡小飞, 邓泽元. 茶叶主要化学品质指标和茶树体部分微量元素的钙铝调控效应[J]. 西北植物学报, 2012, 32(5): 988-994.
|
[23] |
Napaporn S L, Kerdchoechuen O, Laohakunjit N.Chemical qualities and phenolic compounds of Assam tea after soil drench application of selenium and aluminium[J]. Plant Soil, 2012, 356: 381-393.
|
[24] |
Ruan J Y, Zhang F S, Wong M H.Effect of nitrogen formand phosphorus source on the growth, nutrient intake and rhizosphere soil property of Camellia sinensis L.[J]. Plant and Soil, 2000, 223: 63-71.
|
[25] |
李海生, 张志权. 不同铝水平下茶树对铝及矿质养分的吸收与累积[J]. 生态环境, 2007, 16(1): 186-190.
|
[26] |
Hajiboland R, Bahrami-rad S, Bastani S. Aluminum alleviates boron-deficiency induced growth impairment in tea plants[J]. Biologia Plantarum, 2014, 58(4): 717-724.
|
[27] |
Hajiboland R,Bastani S,Bahrami-Rad S, et al.Interactions between aluminum and boron in tea (Camellia sinensis) plants[J]. Acta physiologiae plantarum, 2015, 37(3): 1-13.
|
[28] |
Hajiboland R, Barceló J, Poschenrieder C, et al.Amelioration of iron toxicity: A mechanism for aluminum-induced growth stimulation in tea plants[J]. Journal of Inorganic Biochemistry, 2013, 128: 183-187.
|
[29] |
Yang Y, Liu Y, Huang C F, et al.Aluminium alleviates fluoride toxicity in tea (Camellia sinensis)[J]. Plant Soil, 2016, 402: 1-12.
|
[30] |
张显晨, 郜红建, 张正竹, 等. 铝对氟在茶树体内吸收与分配的影响[J]. 食品科学, 2013, 34(5): 147-150.
|
[31] |
Zhang X C, Gao H J, Wu H H, et al.Ca2+ and CaM are involved in Al3+ pretreatment-promoted fluoride accumulation in tea plants (Camellia sinesis L.)[J]. Plant Physiology and Biochemistry, 2015, 96: 288-295.
|
[32] |
Zhang X C, Gao H J, Yang T Y, et al.Al3+-promoted fluoride accumulation in tea plants (Camellia sinensis) was inhibited by an anion channel inhibitor DIDS[J]. International Journal of Molecular Sciences, 2016, 17: 57-71.
|
[33] |
Xu Q S, Yu Y, Ding Z T, et al.Aluminum induced metabolic responses in two tea cultivars[J]. Plant Physiology and Biochemistry, 2016, 101: 162-172.
|
[34] |
Mukhopadyay M, Bantawa P, Das A, et al.Changes of growth, photosynthesis and alteration of leaf antioxidative defense system of tea [Camellia sinensis (L.) O. Kuntze] seedlings under aluminum stress[J]. Biometals, 2012, 25: 1141-1154.
|
[35] |
李春雷, 倪德江. 铝对茶树光合特性和叶片超微结构的影响[J]. 湖北农业科学, 2014, 53(3): 604-606.
|
[36] |
Li C L, Xu H M, Xu J, et al.Effects of aluminium on ultrastructure and antioxidant activity in leaves of tea plant[J]. Acta Physiologiae Plantarum, 2011, 33: 973-978.
|
[37] |
Xu Q S, Yu Y, Ding Z T, et al.Aluminum induced physiological and proteomic responses in tea(Camellia sinensis) roots and leaves[J]. Plant Physiology and Biochemistry, 2017(115): 141-151.
|
[38] |
陆建良, 梁月荣. 铝对茶树等植物超氧化物歧化酶的影响[J]. 茶叶科学, 1997, 17(2): 197-200.
|
[39] |
Morita A, Yanagisawa O, Takatsu S, et al.Mechanism for the detoxification of aluminum in roots of tea plant (Camellia sinensis (L.) Kuntze)[J]. Phytochemistry, 2008, 69(1): 147-153.
|
[40] |
Hajiboland R, Poschenrieder C.Localization and compartmentation of Al in the leaves and roots of tea plants[J]. Phyton, 2015, 84(1): 86-100.
|
[41] |
Marzena S R, Wojciech B.Pectins esterification in the apoplast of aluminum-treated pea root nodules[J]. Journal of Plant Physiology, 2015(184): 1-7.
|
[42] |
Li D Q, Shu Z F, Ye X L, et al.Cell wall pectin methyl-esterification and organic acids of root tips involve in aluminum tolerance in Camellia sinensis[J]. Plant Physiology and Biochemistry, 2017(119): 265-274.
|
[43] |
Zhu X F, Shi Y Z, Lei G J, et al.XTH31, encoding an in-vitro XEH/XET-active enzyme, regulates Al sensitivity by modulating in-vivo XET action, cell wall xyloglucan content and Al binding capacity in Arabidopsis[J]. Plant Cell, 2012, 24: 4731-4747.
|
[44] |
Ryan P R, Delhaize E.The convergent evolution of aluminium resistance in plants exploits a convenient currency[J]. Functional Plant Biology, 2010, 37(4): 275-284.
|
[45] |
Singh D, Chauhan S K.Organic acids of crop plants in aluminum detoxification[J]. Current Science, 2011, 100: 1509-1515.
|
[46] |
Yang L T, Qi Y P, Jiang H X, et al.Roles of organic acid anion secretion in aluminium tolerance of higher plants[J]. BioMed Research International, 2013: 173682.
|
[47] |
Morita A, Yanagisawa O, Maeda S, et al.Tea plant(Camellia sinensis L.) roots secrete oxalic acid and caffeine into medium containing aluminum[J]. Soil Science & Plant Nutrition, 2011(57): 796-802.
|
[48] |
刘腾腾, 郜红建, 宛晓春, 等. 铝对茶树根细胞膜透性和根系分泌有机酸的影响[J]. 茶叶科学, 2011, 31(5): 458-462.
|
[49] |
Li Y, Huang J, Song X W, et al.An RNA-Seq transcriptome analysis revealing novel insights into aluminum tolerance and accumulation in tea plant[J]. Planta, 2017, 246: 91-103.
|
[50] |
Wang M L, Li Q H, Xin H H, et al.Reliable reference genes for normalization of gene expression data in tea plants (Camellia sinensis) exposed to metal stresses[J]. Plos one, 2017, 12(4): e0175863.
|