[1] Yin Y, Vafeados D, Tao Y, et al.A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis[J]. Cell, 2005, 120: 249-259. [2] Ye H, Liu S, Tang B, et al.RD26 mediates crosstalk between drought and brassinosteroid signalling pathways[J]. Nature Communications, 2017, 8(1): 14573. doi: 10.1038/ncomms14573. [3] 郭新磊, 路普, 王园园, 等. 棉花BZR基因家族的全基因组鉴定及表达分析[J]. 棉花学报, 2017, 29(5): 415-427. Guo X L, Lu P, Wang Y Y, et al.Genome-wide identification and expression analysis of gene family encoding brassinazole resistant transcription factors in cotton[J]. Cotton Science, 2017, 29(5): 415-427. [4] Saha G, Park J I, Jung H J, et al.Molecular characterization of BZR transcription factor family and abiotic stress induced expression profiling in Brassica rapa[J]. Plant Physiology Biochemistry, 2015, 92: 92-104. [5] Yin Y L, Qin K Z, Song X W, et al.BZR1 transcription factor regulates heat stress tolerance through FERONIA receptor-like kinase-mediated reactive oxygen species signaling in tomato[J]. Plant Cell Physiology, 2018, 59(11): 2239-2254. [6] Bai M Y, Zhang L Y, Gampala S S, et al.Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice[J]. PNAs, 2007, 104(34): 13839-13844. [7] Park C H, Kim T W, Son S H, et al.Brassinosteroids control AtEXPA5 gene expression in Arabidopsis thaliana[J]. Phytochemistry, 2010, 71(4): 380-387. [8] Lachowiec J, Mason G A, Schultz K, et al.Redundancy, feedback, and robustness in the Arabidopsis thaliana BZR/BEH gene family[J]. Front Genet, 2018, 9: 523. doi: 10.3389/fgene.2018.00523. [9] 刘天宇. 油菜素甾醇对番茄保卫细胞运动的影响及其调控机制[D]. 杭州: 浙江大学, 2016. Liu T Y.Effect and regulatory mechanism of brassinosteroid on stomatal movement in tomato [D]. Hangzhou: Zhejiang University, 2016. [10] Domagalska M A, Schomburg F M, Amasino R M, et al.Attenuation of brassinosteroid signaling enhances FLC expression and delays flowering[J]. Development, 2007, 134(15): 2841-2850. [11] Jiang W B, Huang H Y, Hu Y W, et al.Brassinosteroid regulates seed size and shape in Arabidopsis[J]. Plant Physiology, 2013, 162(4): 1965-1977. [12] Jiang J, Zhang C, Wang X.A recently evolved isoform of the transcription factor BES1 promotes brassinosteroid signaling and development in Arabidopsis thaliana[J]. Plant Cell. 2015, 27(2): 361-374. [13] 陈旭, 沈春洋, 莫福磊, 等. 番茄BZR基因家族鉴定及非生物胁迫下表达模式分析[J]. 东北农业大学学报, 2021, 52(11): 9-17. Chen X, Shen C Y, Mo F L, et al.Identification of BZR gene family in tomato and expression patterns analysis under abiotic stress[J]. Journal of Northeast Agricultural University, 2021, 52(11): 9-17. [14] Yu H Q, Feng W Q, Sun F A, et al.Cloning and characterization of BES1/BZR1 transcription factor genes in maize[J]. Journal of Plant Growth Regulation, 2018, 86: 235-249. [15] Luo S L, Zhang G B, Zhang Z Y, et al.Genome-wide identification and expression analysis of BZR gene family and associated responses to abiotic stresses in cucumber (Cucumis sativus L.)[J]. BMC Plant Biology, 2023, 23(1): 214. doi: 10.1186/s12870-023-04216-9. [16] 李春, 刘小俊, 蔡鹏, 等. 中国南瓜BZR基因家族的全基因组鉴定及生物信息学分析[J]. 分子植物育种, 2022, 20(19): 6324-6330. Li C, Liu X J, Cai P, et al.Genome-wide identification and bioinformatics analysis of BZR gene family in pumpkin (Cucurbita moschata Duch.)[J]. Molecular Plant Breeding, 2022, 20(19): 6324-6330. [17] Li S, Yan J, Chen L G, et al.Brassinosteroid regulates stomatal development in etiolated Arabidopsis cotyledons via transcription factors BZR1 and BES1[J]. Plant Physiology, 2024, 195(2): 1382-1400. [18] Diao R, Zhao M, Liu Y, et al.The advantages of crosstalk during the evolution of the BZR1-ARF6-PIF4 (BAP) module[J]. Journal of Integrative Plant Biology, 2023, 65(12): 2631-2644. [19] He Y, Zhao Y, Hu J, et al.The OsBZR1-OsSPX1/2 module fine-tunes the growth-immunity trade-off in adaptation to phosphate availability in rice[J]. Molecular Plant, 2024, 17(2): 258-276. [20] Wang Y, Cao J, Wang K, et al.BZR1 Mediates brassinosteroid-induced autophagy and nitrogen starvation in tomato[J]. Plant Physiology, 2018, 179: 671-685. [21] 江倩倩, 王雨婷, 惠竹梅. 葡萄BZR基因家族的鉴定及表达分析[J]. 植物生理学报, 2021, 57(6): 1218-1228. Jiang Q Q, Wang Y T, Xi Z M.Identification and expression analysis of BZR gene family in grapevine[J]. Plant Physiology Journal, 2021, 57(6): 1218-1228. [22] 黎泽斌, 邱永争, 刘延杰, 等. 紫花苜蓿BZR基因家族鉴定及其对非生物胁迫的响应分析[J]. 草业学报, 2024, 33(11): 106-122. Li Z B, Qiu Y Z, Liu Y J, et al.Identification of the BZR gene family in alfalfa and analysis of its transcriptional responses to abiotic stress[J]. Acta Prataculturae Sinica, 2024, 33(11): 106-122. [23] Sun F, Yu H, Qu J, et al.Maize ZmBES1/BZR1-5 decreases ABA sensitivity and confers tolerance to osmotic stress in transgenic Arabidopsis[J]. International Journal of Molecular Sciences, 2020, 21(3): 996. doi: 10.3390/ijms21030996. [24] Hwang S G, Lee C Y, Tseng C S.Heterologous expression of rice 9-cis-epoxycarotenoid dioxygenase 4 (OsNCED4) in Arabidopsis confers sugar oversensitivity and drought tolerance[J]. Botanical Studies, 2018, 59(1): 2. doi:10.1186/s40529-018-0219-9. [25] 刘建汀, 叶新如, 张前荣, 等. 西葫芦NCED基因家族鉴定及其响应干旱胁迫分析[J]. 西北植物学报, 2023, 43(4): 569-581. Liu J T, Ye X R, Zhang Q R, et al.Genome-wide identification and response to drought stress of NCED genes family in Zucchini (Cucurbita pepo L.)[J]. Acta Botanica Boreali-Occidentalia Sinica, 2023, 43(4): 569-581. [26] Li J W, Zhou P, Yang N, et al.CsBZR1 family transcription factors in wild and cultural tea plants and their response to hormone and abiotic stress[J]. Journal of Plant Growth Regulation, 2024, 43: 840-853. [27] Zhang Q J, Li W, Li K, et al.The Chromosome-level reference genome of tea tree unveils recent bursts of non-autonomous LTR retrotransposons in driving genome size evolution[J]. Molecular Plant, 2024, 13(7): 935-938. [28] Yu X, Li L, Zola J, et al.A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana[J]. Plant Journal, 2011, 65(4): 634-646. [29] He J X, Gendron J M, Sun Y, et al.BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses[J]. Science, 2005, 307(5715): 1634-1638. [30] Zhang Y H, Xiao Y Z, Zhang Y A, et al.Accumulation of Galactinol and ABA is involved in exogenous EBR-induced drough tolerance in tea plants[J]. Journal of Agricultural and Food Chemistry, 2022, 70(41): 13391-13403. [31] 臧文蕊, 马明, 砗根, 等. 甜瓜BZR转录因子家族基因的全基因组鉴定及表达模式分析[J]. 生物技术通报, 2024, 40(7): 163-171. Zang W R, Ma M, Chen G, et al.Genome-wide identification and expression pattern analysis of BZR transcription factor gene family of melon[J]. Biotechnology Bulletin, 2024, 40(7): 163-171. [32] Luo S, Zhang G, Zhang Z, et al.Genome-wide identification and expression analysis of BZR gene family and associated responses to abiotic stresses in cucumber (Cucumis sativus L.)[J]. BMC Plant Biology, 2023, 23: 214. doi: 10.1186/s12870-023-04216-9. [33] 张晴, 严新悦, 左春柳, 等. 大豆BZR1基因家族进化与油菜素内酯响应分析[J]. 河北师范大学学报(自然科学版), 2023, 47(6): 620-627. Zhang Q, Yan X Y, Zuo C L, et al.Evolution and brassinosteroid response analysis of BZR1 gene family in soybean[J]. Journal of Hebei Normal University (Natural Science), 2023, 47(6): 620-627. [34] Kuijt S J H, Lamers G E M, Rueb S, et al. Different subcellular localization and trafficking properties of KNOX class 1 homeodomain proteins from rice[J]. Plant Molecular Biology, 2004, 55: 781-796. [35] Otani Y, Tomonaga Y, Tokushige K, et al.Expression profiles of four BES1/BZR1 homologous genes encoding bHLH transcription factors in Arabidopsis[J]. Journal of Pesticide Science, 2020, 45(2): 95-104. [36] 左春柳. 芹菜BZR1转录因子基因鉴定与功能研究[D]. 唐山: 华北理工大学, 2023. Zuo C L.Identification and function analysis of BZR1 gene family in celery [D]. Tangshan: North China University of Science and Technology, 2023. [37] 冯文奇, 孙福艾, 丁磊, 等. 玉米转录因子ZmBES1/BZR1-7基因克隆及功能分析[J]. 核农学报, 2020, 34(1): 17-25. Feng W Q, Sun F A, Ding L, et al.Cloning and functional analysis of maize transcription factor ZmBES1/BZR1-7[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(1): 17-25. [38] Li R, Zhang B, Li T, et al.Identification and characterization of the BZR transcriptionfactor genes family in potato (Solanum tuberosum L.) and their expression profiles in response to abiotic stresses[J]. Plants, 2024, 13(3): 407. doi: 10.3390/plants13030407. [39] Chen J, Nolan T M, Ye H, et al.Arabidopsis WRKY46, WRKY54, and WRKY70 transcription factors are involved in brassinosteroid-regulated plant growth and drought responses[J]. Plant Cell, 2017, 29(6): 1425-1439. [40] Cui X Y, Gao Y, Guo J, et al.BES/BZR transcription factor TaBZR2 positively regulates drought responses by activation of TaGST1[J]. Plant Physiology, 2019, 180(1): 605-620. [41] Sahni S, Prasad B, Liu Q, et al.Overexpression of the brassinosteroid biosynthetic gene DWF4 in Brassica napus simultaneously increases seed yield and stress tolerance[J]. Scientific Reports, 2016, 6: 28298. doi: 10.1038/srep28298. [42] 魏鑫, 倪虹, 张会慧, 等. 外源脱落酸和油菜素内酯对干旱胁迫下大豆幼苗抗旱性的影响[J]. 中国油料作物学报, 2016, 38(5): 605-610. Wei X, Ni H, Zhang H H, et al.Effects of exogenous abscisic acid and brassinolide on drought resistance of soybean seedlings[J]. Chinese Journal of Oil Crop Sciences, 2016, 38(5): 605-610. [43] 程鸿燕, 郭昱, 马芳芳, 等. 谷子NCED基因家族鉴定及其干旱胁迫响应表达模式分析[J]. 江苏农业科学, 2019, 47(1): 40-44. Cheng H Y, Guo Y, Ma F F, et al.Identification of NCED gene family and analysis of their expression patterns in response to drought stress in Setaria italica[J]. Jiangsu Agricultural Sciences, 2019, 47(1): 40-44. |