[1] 杨再强, 韩冬, 王学林, 等. 寒潮过程中4个茶树品种光合特性和保护酶活性变化及品种间差异[J]. 生态学报, 2016, 36(3): 629-641. Yang Z Q, Han D, Wang X L, et al.Changes in photosynthetic parameters and antioxidant enzymatic activity of four tea varieties during a cold wave[J]. Acta Ecologica Sinica, 2016, 36(3): 629-641. [2] 韩文炎, 李鑫, 颜鹏, 等. 茶园“倒春寒”防控技术[J]. 中国茶叶, 2018, 40(2): 9-12. Han W Y, Li X, Yan P, et al.Prevention and control techniques for ‘late spring coldness’ in tea gardens[J]. China Tea, 2018, 40(2): 9-12. [3] 沈天琦, 邱新法, 韦翔鸿, 等. 精细化茶树种植区茶叶春霜冻灾害风险评估——以浙江省松阳县为例[J]. 江苏农业科学, 2019, 47(2): 262-268. Shen T Q, Qiu X F, Wei X H, et al.Risk assessment of tea spring frost disaster in detailed plantation area of tea tree: taking Songyang County of Zhejiang Province as an example[J]. Jiangsu Agricultural Sciences, 2019, 47(2): 262-268. [4] Rui Y, Dinneny J R.A wall with integrity: surveillance and maintenance of the plant cell wall under stress[J]. The New Phytologist, 2020, 225(4): 1428-1439. [5] Ma M M, Yuan Y B, Cheng C X, et al.The MdXTHB gene is involved in fruit softening in ‘Golden Del. Reinders’ (Malus pumila)[J]. Journal of the Science of Food and Agriculture, 2021, 101(2): 564-572. [6] Yan Y L, Takáč T, Li X Q et al. Variable content and distribution of arabinogalactan proteins in banana (Musa spp.) under low temperature stress[J]. Frontiers in Plant Science, 2015, 6: 353. doi: 10.3389/fpls.2015.00353. [7] Liu H H, Ma Y, Chen N, et al.Overexpression of stress-inducible OsBURP16, the β subunit of polygalacturonase 1, decreases pectin content and cell adhesion and increases abiotic stress sensitivity in rice[J]. Plant, Cell & Environment, 2014, 37(5): 1144-1158. [8] Xu Y, Hu D, Hou X, et al.OsTMF attenuates cold tolerance by affecting cell wall properties in rice[J]. The New Phytologist, 2020, 227(2): 498-512. [9] Cosgrove D J.Growth of the plant cell wall[J]. Nature Reviews Molecular Cell Biology, 2005, 6: 850-861. [10] Burton R A, Gidley M J, Fincher G B.Heterogeneity in the chemistry, structure and function of plant cell walls[J]. Nature Chemical Biology, 2010, 6(10): 724-732. [11] 胡志航, 秦志远, 李静文, 等. 茶树捕光色素蛋白复合体基因CsLhcb2的鉴定及低温响应分析[J]. 茶叶科学, 2023, 43(2): 183-193. Hu Z H, Qin Z Y, Li J W, et al.Identification of the light-harvesting chlorophyll-protein complex gene CsLhcb2 and its response to low temperature in tea plants[J]. Journal of Tea Science, 2023, 43(2): 183-193. [12] Meng A J, Wen D X, Zhang C Q.Maize seed germination under low-temperature stress impacts seedling growth under normal temperature by modulating photosynthesis and antioxidant metabolism[J]. Frontiers in Plant Science, 2022, 13: 843033. doi: 10.3389/fpls.2022.843033. [13] Li Y Y, Wang X W, Ban Q Y, et al.Comparative transcriptomic analysis reveals gene expression associated with cold adaptation in the tea plant Camellia sinensis[J]. BMC Genomics, 2019, 20(1): 624. doi: 10.1186/s12864-019-5988-3. [14] Li N N, Yue C, Cao H L, et al. Transcriptome sequencing dissection of the mechanisms underlying differential cold sensitivity in young and mature leaves of the tea plant (Camellia sinensis)[J]. Journal of Plant Physiology, 2018, 224/225: 144-155 [15] 王君雅, 陈玮, 刘丁丁, 等. 不同品种茶树新梢响应“倒春寒”的转录组分析[J]. 茶叶科学, 2019, 39(2): 181-192. Wang J Y, Chen W, Liu D D, et al.The transcriptome analysis of different tea cultivars in response to the spring cold spells[J]. Journal of Tea Science, 2019, 39(2): 181-192. [16] 陈芳, 刘宇鹏, 谷晓平, 等. 低温对茶树光合特性及产量的影响[J]. 作物杂志, 2018(3): 155-161. Chen F, Liu Y P, Gu X P, et al.Effects of low temperature on photosynthetic characteristics and yield of tea(Camellia sinensis L.)[J]. Crops, 2018(3): 155-161. [17] 王连翠. 临沂地区引进不同茶树品种的抗寒性研究[D]. 济南: 山东师范大学, 2007. Wang L C.Primary study on freezing-resistance mechanism and tea quality for the six introduced varieties of tea in Linyi area[D]. Jinan: Shandong Normal University, 2007. [18] 毕彩虹, 范开业, 李杰福, 等. 沂蒙山区茶树无性系品种抗寒性鉴定与筛选[J]. 安徽农业科学, 2014, 42(26): 8936-8937. Bi C H, Fan K Y, Li J F, et al.Identification and screening of cold resistance of the tea clone varieties [Camellia sinensis (L.) O. Kuntze] in Yimeng mountain area[J]. Journal of Anhui Agricultural Sciences, 2014, 42(26): 8936-8937. [19] Gao Q J, Tong W, Li F D.TPIA2: an updated tea plant information archive for Camellia genomics[J]. Nucleic Acids Research, 2024, 52(D1): D1661-D1667. [20] 姜籽竹, 朱恒光, 张倩, 等. 低温胁迫下植物光合作用的研究进展[J]. 作物杂志, 2015(3): 23-28. Jiang Z Z, Zhu H G, Zhang Q, et al.Progress of influence of low temperature on plant photosynthesis[J]. Crops, 2015(3): 23-28. [21] 李正华, 李海霞, 李静, 等. 叶绿素荧光分析技术在林木研究中的应用[J]. 安徽农业科学, 2015, 43(23): 156-158. Li Z H, Li H X, Li J, et al.Application of chlorophyll fluorescence analysis in the plant study[J]. Journal of Anhui Agricultural Sciences, 2015, 43(23): 156-158. [22] 杨帅, 高尚珠, 卢晗, 等. 植物细胞壁形成及在非生物胁迫中的作用[J]. 植物生理学报, 2023, 59(7): 1251-1264. Yang S, Gao S Z, Lu H, et al.Plant cell wall development and its function in abiotic stress[J]. Plant Physiology Journal, 2023, 59(7): 1251-1264. [23] 房用, 孟振农, 李秀芬, 等. 山东茶树叶片解剖结构分析[J]. 茶叶科学, 2004, 24(3): 190-196. Fang Y, Meng Z N, Li X F, et al.Analysis of anatomical structure on tea leaves in Shandong province[J]. Journal of Tea Science, 2004, 24(3): 190-196. [24] Luo J L, Huang S J, Chang Y L, et al.Physiological and transcriptomic analyses reveal tea plant (Camellia sinensis L.) adapts to extreme freezing stress during winter by regulating cell wall structure[J]. BMC Genomics, 2023, 24: 558. doi: 10.1186/s12864-023-09670-1. [25] Cao S F, Zheng Y H, Wang K T, et al.Effect of methyl jasmonate on cellwall modification of loquat fruit in relation to chilling injury after harvest[J]. Food Chemistry, 2010, 118(3): 641-647. [26] Holland N, Nunes F L D, de Medeiros I U D, et al. High-temperature conditioning induces chilling tolerance in mandarin fruit: a cell wall approach[J]. Journal of Agriculture and Food Chemistry, 2012, 92(15): 3039-3045. [27] 刘静. 低温胁迫对香蕉 (Musa spp.) 细胞壁半纤维素代谢的影响[D]. 广州: 华南农业大学, 2018. Liu J.The response of banana (Musa spp.) hemicellulose to mild chilling[D]. Guangzhou: South China Agricultural University, 2018. [28] 宛晓春. 茶叶生物化学[M]. 3版. 北京: 中国农业出版社, 2003. Wan X C.Tea Biochemistry[M]. 3rd ed. Beijing: China Agriculture Press, 2003. [29] 毛纯, 何季, 文雪峰, 等. 代谢组学在茶树生理生化代谢研究中的应用进展[J]. 茶叶科学, 2023, 43(5): 607-620. Mao C, He J, Wen X F, et al.Advances in the application of metabolomics in the study of physiological and biochemical metabolism of tea plants [Camellia sinensis (L.) O. Kuntze][J]. Journal of Tea Science, 2023, 43(5): 607-620. [30] 尤鑫, 龚吉蕊. 叶绿素荧光动力学参数的意义及实例辨析[J]. 西部林业科学, 2012, 41(5): 90-94. You X, Gong J R.Significance and application of chlorophyll fluorescence dynamics process parameters[J]. Journal of West China Forestry Science, 2012, 41(5): 90-94. [31] Müller P, Li X P, Niyogi K K.Non-photochemical quenching. A response to excess light energy[J]. Plant Physiology, 2001, 125(4): 1558-1566. [32] 李庆会, 徐辉, 周琳, 等. 低温胁迫对2个茶树品种叶片叶绿素荧光特性的影响[J]. 植物资源与环境学报, 2015, 24(2): 26-31. Li Q H, Xu H, Zhou L, et al.Effect of low temperature stress on chlorophyll fluorescence characteristics in leaf of two cultivars of Camellia sinensis[J]. Journal of Plant Resources and Environment, 2015, 24(2): 26-31. [33] 林郑和, 钟秋生, 游小妹, 等. 低温对不同基因型‘白鸡冠’F1代叶绿素荧光的影响[J]. 茶叶学报, 2018, 59(2): 57-66. Lin Z H, Zhong Q S, You X M, et al.Effect of low temperature on chlorophyll fluorescence of tea of different genotypes[J]. Acta Tea Sinica, 2018, 59(2): 57-66. [34] Öquist G, Huner N P.Photosynthesis of overwintering evergreen plants[J]. Annual Review of Plant Biology, 2003, 54(1): 329-355. |