[1] 张振梅, 石元值, 马立锋, 等. 采摘标准与施氮水平对茶树春茶产量、品质及氮素利用的影响[J]. 茶叶科学, 2014, 34(5): 506-514.
Zhang Z M, Shi Y Z, Ma L F, et al.Effect of different plucking standards and nitrogen application levels on the spring shoot yield, quality-related chemical compounds and n utilization efficiency of tea plants[J]. Journal of Tea Science, 2014, 34(5): 506-514.
[2] Kang B, Chang H, Na Y J, et al.Extract of enzyme-hydrolyzed green tea seed as potent melanin synthesis inhibitor[J]. Bulletin of the Korean Chemical Society, 2013, 34(7): 2199-2202.
[3] Kumar M, Kannan A, Bhar R, et al.Nutrient intake, digestibility and performance of Gaddi kids supplemented with tea seed or tea seed saponin extract[J]. Asian Australasian Journal of Animal Sciences, 2017, 30(4): 486-494.
[4] Kim J M, Park S K, Kang J Y, et al.Green tea seed oil suppressed Aβ1-42-induced behavioral and cognitive deficit via the Aβ-related Akt pathway[J]. International Journal of Molecular Sciences, 2019, 20(8): 1865. doi: 10.3390/ijms20081865.
[5] Tung Y T, Hsu Y J, Chien Y W.Tea seed oil prevents obesity, reduces physical fatigue and improves exercise performance in high-fat-diet-induced obese ovariectomized mice[J]. Molecules, 2019, 24(5): 980. doi: 10.3390/molecules24050980.
[6] 梅宇. 2024年中国茶叶生产与内销形势分析[J]. 中国茶叶, 2025, 47(6): 24-30.
Mei Y.Analysis of China's tea production and domestic sales in 2024[J]. China Tea, 2025, 47(6): 24-30.
[7] 孙达. 高结实力茶树品种资源调查与茶叶籽油超临界萃取工艺研究[D]. 杭州: 浙江大学, 2012.
Sun D.Survey of fruiting ability among tea varietals and supercritical extraction of tea seed oil [D]. Hangzhou: Zhejiang University, 2012.
[8] 罗雅慧. 茶树良种浙农21叶籽两用栽培技术[J]. 浙江农业科学, 2014(6): 828-830.
Luo Y H.Cultivation technique for high-quality tea tree varieties of leaf and seed dual of Zhenong 21[J]. Zhejiang Agricultural Sciences, 2014(6): 828-830.
[9] Jiang C K, Ma J Q, Apostolides Z, et al.Metabolomics for a millenniums-old crop: tea plant (Camellia sinensis)[J]. Journal of Agricultural and Food Chemistry, 2019, 67(23): 6445-6457.
[10] Jiang L, Li D J, Yuan M A.Comparative physiological and metabolomic analyses reveal the different biological characteristics between two tea cultivars[J]. Russian Journal of Plant Physiology, 2022, 69: 1021-4437. doi: 10.1134/S1021443722010071.
[11] 毛纯, 何季, 文雪峰, 等. 代谢组学在茶树生理生化代谢研究中的应用进展[J]. 茶叶科学, 2023, 43(5): 607-620.
Mao C, He J, Wen X F, et al.Advances in the application of metabolomics in the study of physiological and biochemical metabolism of tea plants [Camellia sinensisc (L.) O. Kuntze][J]. Journal of Tea Science, 2023, 43(5): 607-620.
[12] 郭家鑫, 鲁晓宇, 陶一凡, 等. 棉花在盐碱胁迫下代谢产物及通路的分析[J]. 作物学报, 2022, 48(8): 2100-2114.
Guo J X, Lu X Y, Tao Y F, et al.Analysis of metabolites and pathways in cotton under salt and alkali stresses[J]. Acta Agronomica Sinica, 2022, 48(8): 2100-2114.
[13] Ji H G, Lee Y R, Lee M S.Metabolic phenotyping of various tea (Camellia sinensis L.) cultivars and understanding of their intrinsic metabolism[J]. Food Chemistry, 2017, 233: 321-330. doi: 10.1016/j.foodchem.2017.04.079.
[14] Samanta T, Kotamreddy J N R, Ghosh B C. Changes in targeted metabolites, enzyme activities and transcripts at different developmental stages of tea leaves: a study for understanding the biochemical basis of tea shoot plucking[J]. Acta Physiologiae Plantarum, 2017, 39: 11-16. doi: 10.1007/s11738-016-2298-0.
[15] 郑寨生, 袁名安, 江丽, 等. 面向茶叶籽高产的茶树“控肥稀植”栽培技术研究[J]. 园艺与种苗, 2022, 42(12): 74-76.
Zheng Z S, Yuan M A, Jiang L, et al.Study on the cultivation technology of tea tree ‘fertilizer control and sparse planting for high' yield of tea seed[J]. Horticulture & Seed, 2022, 42(12): 74-94.
[16] 翟秀明, 李解, 唐敏, 等. 重庆30份茶树种质资源农艺性状与生化成分多样性[J]. 浙江农业学报, 2021, 33(7): 1244-1255.
Zhai X M, Li J, Tang M, et al.Diversity analysis of 30 tea germplasm resources in Chongqing based on agronomic traits and biochemical components[J]. Acta Agriculturae Zhejiangensis, 2021, 33(7): 1244-1255.
[17] 张湘琳, 凌智辉, 胡维霞, 等. 不同温度热风萎凋对红茶萎凋叶及成茶品质的影响[J]. 茶叶科学, 2024, 44(3): 483-492.
Zhang X L, Ling Z H, Hu W X, et al.Effects of different temperature hot air withering on withered leaves and tea quality of black tea[J]. Journal of Tea Science, 2024, 44(3): 483-492.
[18] 雷雨, 段继华, 黄飞毅, 等. 茶树杂交F1主要品质成分杂种优势与混合遗传分析[J]. 核农学报, 2023, 37(9): 1744-1750.
Lei Y, Duan J H, Huang F Y, et al.Heterosis and mixed genetic analysis of main quality components in hybrid F1 populations of tea[J]. Journal of Nuclear Agricultural Sciences, 2023, 37(9): 1744-1750.
[19] 廖献盛, 邵淑贤, 杨如兴, 等. 茶树黄化种‘天山黄芽'的广泛靶向及靶向代谢组学分析[J]. 应用与环境生物学报, 2023, 29(6): 1411-1417.
Liao X S, Shao S X, Yang R X, et al.Widely targeted and targeted metabolomics analysis of new albino tea mutants ‘Tianshan Huangya'[J]. Journal of Applied and Environmental Biology, 2023, 29(6): 1411-1417.
[20] Geng S, Misra B B, De Armas E, et al.Jasmonate-mediated stomatal closure under elevated CO2 revealed by time-resolved metabolomics[J]. The Plant Journal for Cell and Molecular Biology, 2016, 88(6): 947-962.
[21] Fiehn O, Wohlgemuth G, Scholz M, et al.Quality control for plant metabolomics: quality control in metabolomics[J]. The Plant Journal for Cell and Molecular Biology, 2008, 53(4): 691-704.
[22] Zhu W, Han H T, Liu A M, et al.Combined ultraviolet and darkness regulation of medicinal metabolites in Mahonia bealei revealed by proteomics and metabolomics[J]. Journal of Proteomics, 2021, 233: 104081. doi: 10.1016/j.jprot.2020.104081.
[23] 白健, 龚加顺, 艾桄屹, 等. 茶树修剪老叶成分分析及利用塔宾曲霉制备茶褐素的条件优化[J]. 中国食品学报, 2023, 23(7): 250-258.
Bai J, Gong J S, Ai G Y, et al.Composition analysis of trimmed old leaves from tea trees and its application in theabrownin production by Aspergillus tubingensis[J]. Journal of Chinese Institute of Food Science and Technology, 2023, 23(7): 250-258.
[24] 郑知临. 不同发育时期茶籽转录组及其脂肪酸代谢相关基因分析[D]. 福州: 福建农林大学, 2020.
Zheng Z L.Analysis of transcriptome and related genes to fatty acid metabolism in seeds of Camellia sinensis at different developmental stages [D]. Fuzhou: Fujian Agriculture and Forestry University, 2020.
[25] 江丽, 郑寨生, 李朵姣, 等. 储藏条件对茶叶籽油品质的影响[J]. 中国粮油学报, 2023, 38(1): 15-21.
Jiang L, Zheng Z S, Li D J, et al.Effects of storage conditions on quality of tea seed oil[J]. Journal of the Chinese Cereals and Oils Association, 2023, 38(1): 15-21.
[26] 陈明杰, 杜正花, 秦健恒, 等. 不同种质茶籽脂质代谢特征分析[J]. 茶叶科学, 2021, 41(3): 350-360.
Cheng M J, Du Z H, Qin J H, et al.Analysis of characteristics of lipid metabolism of different germplasm tea seeds[J]. Journal of Tea Science, 2021, 41(3): 350-360.
[27] 刘玲玲, 安聪聪, 叶夕苗, 等. 马铃薯块茎顶端优势与主茎数及产量组分的相关性[J]. 核农学报, 2022, 36(2): 329-340.
Liu L L, An C C, Ye X M, et al.Relationships among apical dominance of potato tuber, the number of main stem and yield components[J]. Journal of Nuclear Agricultural Sciences, 2022, 36(2): 329-340.
[28] 王原秀, 唐博希, 田慧源, 等.脱落酸对植物芽休眠和侧枝生长的调控[J/OL]. 分子植物育种, 2023 [2025-04-22]. https://link.cnki.net/urlid/46.1068.S.20230706.1944.014.
Wang Y X, Tang B X, Tian H Y, et al.Regulation of abscisic acid on bud dormancy and lateral branch growth in plants [J/OL]. Molecular Plant Breeding, 2023 [2025-04-22]. https://link.cnki.net/urlid/46.1068.S.20230706.1944.014.
[29] 张晓菊, 杜悦阳, 张凌云. 基于代谢组学对“英红9号”及其黄化突变种“黄玉”的红茶生产适制性比较分析[J]. 食品安全质量检测学报, 2024, 15(13): 276-287.
Zhang X J, Du Y Y, Zhang L Y.Comparative analysis of black tea production suitability of “Yinghong 9” and its yellows mutant “Topaz” based on metabolomics[J]. Journal of Food Safety and Quality, 2024, 15(13): 276-287.
[30] 郭亚飞. 茶树鲜叶中儿茶素和氨基酸性状的遗传基础解析[D]. 武汉: 华中农业大学, 2022.
Guo Y F.Genetic basis analysis of catechins and amino acids traits in fresh leaves of Camellia sinensis [D]. Wuhan: Huazhong Agricultural University, 2022.
[31] Crane J C.Growth substances in fruit setting and development[J]. Annual Review of Plant Physiology, 1964, 15(1): 303-326.
[32] 蔡国华. 拟南芥泛素连接酶亚基BTB-A2家族响应脱落酸信号的机理研究[D]. 南京: 南京大学, 2020.
Cai G H.The mechanism of ubiquitin ligase subunit BTB-A2 family responding to ABA signaling in Arabidopsis thaliana [D]. Nanjing: Nanjing University, 2020.
[33] Yao C, Finlayson S A.Abscisic acid is a general negative regulator of Arabidopsis axillary bud growth[J]. Plant Physiological, 2015, 169: 611-626.
[34] 袁琳, 许大全. 外源赤霉素GA3对大豆光合作用的促进和叶片内源赤霉素GA1+3水平[J]. 植物生理与分子生物学学报, 2002, 28(4): 317-320.
Yuan L, Xu D Q.Stimulatory effect of exogenous GA3 on photosynthesis and the level of endogenous GA1+3 in soybean leaf[J]. Journal of Plant Physiology and Molecular Biology, 2002, 28(4): 317-320.
[35] 李素素. 赤霉素在水稻响应高温胁迫中的调控作用[D]. 武汉: 华中农业大学, 2022.
Li S S.Regulation of gibberellin in response to high temperature stress in rice [D]. Wuhan: Huazhong Agricultural University, 2022.
[36] Li X A, Long Q H, Gao F, et al.Effect of cutting styles on quality and antioxidant activity in fresh-cut pitaya fruit[J]. Postharvest Biology and Technology, 2017, 124: 1-7. doi: 10.1016/j.postharvbio.2016.09.009.
[37] 李聪聪, 王浩乾, 叶玙璠, 等. 植物激素对茶树春季新梢生长发育的调控作用研究[J]. 茶叶科学, 2023, 43(3): 335-348.
Li C C, Wang H Q, Ye Y F, et al.Study on the regulation roles of plant hormones on the growth and development of tea shoots in spring[J]. Journal of Tea Science, 2023, 43(3): 335-348.
[38] 王正江, 张灿, 王帅, 等. 青花椒开黄花的生理变化及调控初步研究[J]. 植物生理学报, 2023, 59(2): 315-323.
Wang Z J, Zhang C, Wang S, et al.Preliminary study on physiological changes and regulation of Zanthoxylum armatum with yellow flower[J]. Plant Physiology Journal, 2023, 59(2): 315-323.
[39] 林郑和, 孔祥瑞, 陈常颂, 等. 基于RNA-Seq分析茶树新品系‘春绿'生物信息[J]. 茶叶学报, 2023, 64(2): 29-36.
Lin Z H, Kong X R, Chen C S, et al.RNA-Seq analysis on a new tea strain, ‘Chunlv'[J]. Acta Tea Sinica, 2023, 64(2): 29-36.
[40] 刘健伟. 基于组学技术研究氮素对于茶树碳氮代谢及主要品质成分生物合成的影响[D]. 北京: 中国农业科学院, 2016.
Liu J W.Omics-based study on the metabolism of C/N and biosynthesis of main quality related components in tea plants affected by nitrogen [D]. Beijing: Chinese Academy of Agricultural Sciences, 2016.
[41] 宋建民, 田纪春, 赵世杰. 植物光合碳和氮代谢之间的关系及其调节[J]. 植物生理学通讯, 1998, 34(3): 230-238.
Song J M, Tian J C, Zhao S J.Relationship between photosynthetic carbon and nitrogen metabolism in plants and its regulation[J]. Plant Physiology Journal, 1998, 34(3): 230-238.
[42] 杨世海, 陶静, 刘晓峰, 等. 培养基中碳源和氮源对甘草愈伤组织生长和黄酮类化合物合成的影响[J]. 中国中药杂志, 2006(22): 1857-1859.
Yang S H, Tao J, Liu X F, et al.Effects of carbon source and nitrogen source on callus growth and flavonoid content in Glycyrrhiza uralensis[J]. China Journal of Chinese Materia Medica, 2006(22): 1857-1859.
[43] 尚军, 吴旺泽, 马永贵. 植物苯丙烷代谢途径[J]. 中国生物化学与分子生物学报, 2022, 38(11): 1467-1476.
Shang J, Wu W Z, Ma Y G.Metabolic pathway of phenylpropane in plants[J]. Chinese Journal of Biochemistry and Molecular Biology, 2022, 38(11): 1467-1476.
[44] 汤丹丹, 刘美雅, 范凯, 等. 茶树氮素吸收利用机制研究进展[J]. 园艺学报, 2017, 44(9): 1759-1771.
Tang D D, Liu M Y, Fan K, et al.Research progress of nitrogen utilization and assimilation in tea plant[J]. Acta Horticulturae Sinica, 2017, 44(9): 1759-1771.
[45] Cheng S H, Fu X M, Wang X Q.Studies on the biochemical formation pathway of the amino acid L-theanine in tea and other plants[J]. Journal of Agricultural and Food Chemistry, 2017, 65(33): 7210-7216.
[46] 张梁, 陈琪, 宛晓春, 等. 中国茶叶生物化学研究40年[J]. 中国茶叶, 2019, 41(9): 1-10.
Zhang L, Cheng Q, Wan X C, et al.Research on the biochemistry of Chinese tea has lasted for 40 years[J]. China Tea, 2019, 41(9): 1-10. |