[1] 李娜娜. 新梢白化茶树生理生化特征及白化分子机理研究[D]. 杭州: 浙江大学, 2015. Li N N.Physiological, biochemical characteristics and molecular albinism of the albino tea (Camellia sinensis) plant[D]. Hangzhou: Zhejiang University, 2015. [2] 陈宗懋, 刘仲华, 杨亚军, 等. 2019年中国茶叶科技进展[J]. 中国茶叶, 2020, 42(5): 1-12. Chen Z M, Liu Z H, Yang Y J, et al.Progress of tea science and technology in China in 2019[J]. China Tea, 2020, 42(5): 1-12. [3] Shu S, Tang Y, Yuan Y, et al.The role of 24-epibrassinolide in the regulation of photosynthetic characteristics and nitrogen metabolism of tomato seedlings under a combined low temperature and weak light stress[J]. Plant Physiology and Biochemistry, 2016, 107: 344-353. [4] 刘彦, 汪志威, 张冬莲, 等. 茶树抗旱研究进展[J]. 江西农业, 2018, 14: 56-57. Liu Y, Wang Z W, Zhang D L, et al.Advancements in research on drought resistance in tea plants[J]. Jiangxi Agriculture, 2018, 14: 56-57. [5] Zio E, Golea L, Mrs C.Identifying groups of critical edges in a realistic electrical network by multi-objective genetic algorithms[J]. Reliability Engineering and System Safety, 2012, 99: 172-177. [6] Peeva V, Cornic G.Leaf photosynthesis of Haberlea rhodopensis before and during drought[J]. Environmental and Experimental Botany, 2009, 65(2): 310-318. [7] Golldack D, Li C, Mohan H, et al.Tolerance to drought and salt stress in plants: unraveling the signaling networks[J]. Frontiers in Plant Science, 2014, 5: 151. doi: 10.3389/FPLS.2014.00151. [8] 郭春芳. 水分胁迫下茶树的生理响应及其分子基础[D]. 福州: 福建农林大学, 2008. Guo C F.Physiological response and molecular basis of tea plant (Camellia sinensis) exposed to water stress[D]. Fuzhou: Fujian Agriculture and Forest University, 2008. [9] 李庆会, 徐辉, 周琳, 等. 低温胁迫对2个茶树品种叶片叶绿素荧光特性的影响[J]. 植物资源与环境学报, 2015, 24(2): 26-31. Li Q H, Xu H, Zhou L, et al.Effects of low temperature stress on chlorophyll fluorescence characteristics in leaf of two cultivars of Camellia sinensis[J]. Journal of Plant Resources and Environment, 2015, 24(2): 26-31. [10] Hetherington S E, Smillie R M, Hardacre A K, et al.Using chlorophyll fluorescence in vivo to measure the chilling tolerances of different populations of maize[J]. Functional Plant Biology, 1983, 10(3): 247-256. [11] Liu Z G, Sun W C, Zhao Y N, et al.Effects of low nocturnal temperature on photosynthetic characteristics and chloroplast ultrastructure of winter rapeseed[J]. Russian Journal of Plant Physiology, 2016, 63(4): 451-460. [12] 刘海卿, 孙万仓, 刘自刚, 等. 北方寒旱区白菜型冬油菜抗寒性与抗旱性评价及其关系[J]. 中国农业科学, 2015, 48(18): 3743-3756. Liu H Q, Sun W C, Liu Z G, et al.Evaluation of drought resistance and cold resistance and research of their relationship at seedling stage of winter rapeseed (Brassica campestris L.) in cold and arid regions in north China[J]. Scientia Agricultura Sinica, 2015, 48(18): 3743-3756. [13] 蒲光兰, 周兰英, 胡学华, 等. 干旱胁迫对金太阳杏叶绿素荧光动力学参数的影响[J]. 干旱地区农业研究, 2005, 23(3): 44-48. Pu G L, Zhou L Y, Hu X H, et al.Effect of soil drought stress on characteristics of chlorophyll fluorescence in Jintaiyang apricot variety[J]. Agricultural Research in the Arid Areas, 2005, 23(3): 44-48. [14] Eriksson P G, Reczko B, Merkle R, et al.Early proterozoic black shales of the Timeball Hill Formation, South Africa: volcanogenic and palaeoenvironmental influences[J]. Journal of African Earth Sciences, 1994, 18(4): 325-337. [15] 王文森. 基于叶绿素荧光动力学的大豆干旱/NaCl胁迫影响分析[D]. 沈阳: 沈阳农业大学, 2018. Wang W S.Analysis of effect of drought/NaCl stress on Soybean based on chlorophyll fluorescence kinetics[D]. Shenyang: Shenyang Agricultural University, 2018. [16] Ehlert O, Bücking W, Riegler J, et al.Organometallic synthesis and electrophoretic characterization of high-quality ZnS: Mn/ZnS core/shell nanoparticles for bioanalytical applications[J]. Microchimica Acta, 2008, 160(3): 351-356. [17] Belyaeva N E, Bulychev A A, Riznichenko G Y, et al.Analyzing both the fast and the slow phases of chlorophyll a fluorescence and P700 absorbance changes in dark-adapted and preilluminated pea leaves using a Thylakoid Membrane model[J]. Photosynthesis Research, 2019, 140(1): 1-19. [18] Wang Y, Yang F, Gritsenko M A, et al.Reversed-phase chromatography with multiple fraction concatenation strategy for proteome profiling of human MCF10A cells[J]. Proteomics, 2011, 11(10): 2019-2026. [19] Silva E A, Gouveia-Neto A S, Oliveira R A, et al. Water deficit and salt stress diagnosis through LED induced chlorophyll fluorescence analysis in Jatropha curcas L.[J]. Journal of Fluorescence, 2012, 22(2): 623-630. [20] 生利霞, 王倩, 孟祥毅, 等. 植物耐涝分子机理研究进展[J]. 分子植物育种, 2017, 15(7): 2823-2828. Sheng L X, Wang Q, Meng X Y, et al.Research progress on molecular mechanism of waterlogging tolerance in plants[J]. Molecular Plant Breeding, 2017, 15(7): 2823-2828. [21] Dai F, Zhou M X, Zhang G P.The change of chlorophyll fluorescence parameters in winter barley during recovery after freezing shock and as affected by cold acclimation and irradiance[J]. Plant Physiology & Biochemistry, 2007, 45(12): 915-921. [22] Shin Y K, Bhandari S R, Lee J G.Monitoring of salinity, temperature, and drought stress in grafted watermelon seedlings using chlorophyll fluorescence[J]. Frontiers in Plant Science, 2021, 12: 2913-2924. [23] Shin Y K, Bhandari S R, Jo J S, et al.Effect of drought stress on chlorophyll fluorescence parameters, phytochemical contents, and antioxidant activities in lettuce seedlings[J]. Horticulture, 2021, 7(8): 238-254. [24] 葛君, 刘震. 低温胁迫对拔节期小麦光合色素, 光合参数及叶绿素荧光特性的影响[J]. 山西农业科学, 2021, 49(11): 1253-1256. Ge J, Liu Z.Effects of low temperature stress on photosynthetic pigments, photosynthetic parameters and chlorophyll fluorescence characteristics of wheat at jointing stage[J]. Journal of Shanxi Agricultural Sciences, 2021, 49(11): 1253-1256. [25] 林郑和, 钟秋生, 陈常颂, 等. 低温对茶树新品系叶绿素与电导率的影响[J]. 福建茶叶, 2014, 36(5): 10-11. Lin Z H, Zhong Q S, Chen C S, et al.The effect of low temperature on chlorophyll and electrical conductivity in new tea cultivar[J]. Tea in Fujian, 2014, 36(5): 10-11. [26] 程国山, 游新才, 武艳, 等. 低温胁迫后抗寒茶树品种‘紫阳圆叶’的基因差异表达分析[J]. 植物资源与环境学报, 2013, 22(4): 38-43. Cheng G S, You X C, Wu Y, et al.Analysis on gene differential expression of cold-resistance cultivar ‘Ziyangyuanye' of Camellia sinensis after low temperature stress[J]. Journal of Plant Resources and Environment, 2023, 22(4): 38-43. [27] 孔海云, 张丽霞, 王日为. 低温与光照对茶树叶片叶绿素荧光参数的影响[J]. 茶叶, 2011, 37(2): 75-78. Kong H Y, Zhang L X, Wang R W.The effects of light and low temperature on chlorophyll fluorescence kinetics parameters of tea leaves[J]. Journal of Tea, 2011, 37(2): 75-78. [28] Farquhar G D, Von C S, Berry J A.A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species[J]. Planta, 1980, 149(1): 78-90. [29] Busch F A, Sage R F.The sensitivity of photosynthesis to O2 and CO2 concentration identifies strong Rubisco control above the thermal optimum[J]. New Phytologist, 2016, 213(1): 1036-1051. [30] Guo L P, Kang H J, Ouyang Z, et al.Photosynthetic parameter estimations by considering interactive effects of light, temperature and CO2 concentration[J]. International Journal of Plant Production, 2015, 9(3): 321-346. [31] Retkute R, Smithunna S E, Smith R W, et al.Exploiting heterogeneous environments: does photosynthetic acclimation optimize carbon gain in fluctuating light?[J] Journal of Experimental Botany, 2015, 66(9): 2437-2447. [32] Sharwood R E, Ghannoum O, Kapralov M V, et al.Temperature responses of Rubisco from Paniceae grasses provide opportunities for improving C3 photosynthesis[J]. Nature Plants, 2016, 2(12): 1618-1636. [33] Zhang N Y, Li G, Yu S X, et al.Can the responses of photosynthesis and stomatal conductance to water and nitrogen stress combinations be modeled using a single set of parameters?[J] Frontiers in Plant Science, 2017, 1(8): 328-348. [34] 唐星林. 基于FvCB模型的植物光合生理生态特性研究[D]. 北京: 中国林业科学研究院, 2017. Tang X L.Physiological and ecological characteristics of photosynthesis in plants based on FvCB model[D]. Beijing: Chinese Academy of Forestry, 2017. [35] 王文静, 麻冬梅, 蔡进军, 等. 基于FvCB模型的盐胁迫下紫花苜蓿幼苗光合特性的研究[J]. 中国生态农业学报, 2021, 29(3): 540-548. Wang W J, Ma D M, Cai J J, et al.Photosynthetic characteristics of alfalfa seedlings under salt stress based on FvCB model[J]. Acta Ecologica Sinica, 2021, 29(3): 540-548. [36] 刘振洋, 赵家松, 胡仁傑, 等. 基于关联规则与多元线性回归的云南省甘蔗产量预测模型[J]. 广东农业科学, 2022, 49(12): 160-166. Liu Z Y, Zhao J S, Hu R J, et al.Yield prediction model for sugarcane in Yunnan province based on association rules and multiple linear regression[J]. Guangdong Agricultural Sciences, 2022, 49(12): 160-166. [37] Breiman L.Random forests, machine learning 45[J]. Journal of Clinical Microbiology, 2001, 45(1): 5-32. [38] 田惠玲, 朱建华, 何潇, 等. 基于随机森林模型的东北三省乔木林生物质碳储量预测[J]. 林业科学, 2022, 58(4): 40-50. Tian H L, Zhu J H, He X, et al.Projected biomass carbon stock of arbor forest of three provinces in northeastern China based on random forest model[J]. Scientia Silvae Sinicae, 2022, 58(4): 40-50. [39] Samui P.Slope stability analysis: a support vector machine approach[J]. Environmental Geology, 2008, 56(2): 255-267. [40] Samui P, Das S K.Support vector machine and relevance vector machine classifier in analysis of slopes[J]. International Association for Computer Methods and Advances in Geomechanics, 2008, 12(5): 4667-4674. [41] Tian Y, Yun Z Q, Yang X H.Improving shrub biomass estimations in the Qinghai-Tibet Plateau: age-based Caragana intermedia allometric models[J]. The Forestry Chronicle, 2014, 90(2): 154-160. [42] 伍丹华, 周礼梅. 基于BP神经网络的粮食产量预测[J]. 农业工程技术, 2020, 40(27): 51-53. Wu D H, Zhou L M.Grain yield prediction based on BP neural network[J]. Agricultural Engineering Information, 2000, 40(27): 51-53. [43] Awchi T A.River discharges forecasting in northern Iraq using different ANN techniques[J]. Water Resources Management, 2014, 28(3): 801-814. [44] 张兴泽, 滕瑞海, 牟振鹏. 北方茶区冻害的发生和防治[J]. 中国茶叶, 2011, 33(7): 24-25. Zhang X Z, Teng R H, Mou Z P.Occurrence and prevention of frost damage in northern tea-growing regions[J]. China Tea, 2011, 33(7): 24-25. [45] 雷荣森. 高山茶区寒冻气候对茶树的影响及防御措施[J]. 福建茶叶, 2020, 42(3): 12. Lei R S.Impact of cold and freezing climates on tea plants in high-mountain tea regions and defensive measures[J]. Tea in Fujian, 2020, 42(3): 12. [46] 韦英英, 林添水, 张金超, 等. 铁观音示范茶园立体气候特征及影响研究[J]. 海峡科学, 2022(8): 31-39. Wei Y Y, Lin T S, Zhang J C, et al.Study on the three-dimensional climatic characteristics and impacts in Tieguanyin demonstration tea garden[J]. Staits Science, 2022(8): 31-39. [47] 张云伟, 李晓东, 徐希斌. 低温干旱对山东省青岛市茶生产的影响及对策[J]. 落叶果树, 2012, 44(1): 32-34. Zhang Y W, Li X D, Xu X B.Impact of low temperature and drought on tea production in Qingdao, Shandong Province, and countermeasures[J]. Deciduous Fruits, 2012, 44(1): 32-34. [48] 徐晓莹, 黄文尉, 张丽霞. 茶树响应低温胁迫的分子机制研究进展[J]. 茶叶通讯, 2023, 50(3): 288-294. Xu X Y, Huang W W, Zhang L X.The research progress on molecular mechanism of tea plants response to cold stress[J]. Journal of Tea Communication, 2023, 50(3): 288-294. [49] 张波, 罗阳欢, 李浪, 等.贵州茶树春季低温灾害气候风险评估与区划[J/OL]. 中国农业科技导报, 1-9 [2024-12-09]. https://doi.org/10.13304/j.nykjdb.2023.0722. Zhang B, Luo Y H, Li L, et al.Climate risk assessment and zoning of spring low temperature disasters of tea trees in Guizhou[J/OL]. Journal of Agricultural Science and Technology, 1-9 [2024-12-09]. https://doi.org/10.13304/j.nykjdb.2023.0722. [50] 陈鑫, 邬晓龙, 刘升锐, 等. 干旱胁迫下AMF对茶树光合特性及其基因表达的影响[J]. 园艺学报, 2024, 51(10): 2358-2370. Chen X, Wu X L, Liu S R, et al.Effects of AMF on photosynthetic characteristics and gene expressions of tea plants under drought stress[J]. Acta Horticulturae Sinica, 2024, 51(10): 2358-2370. [51] 陈博雯, 覃子海, 张烨, 等. 干旱胁迫下澳洲茶树生理活性及内源激素动态变化研究[J]. 山东农业科学, 2019, 51(10): 55-59. Chen B W, Qin Z H, Zhang Y, et al.Dynamic changes of physiological activities and endogenous hormones in melaleuca alternifolia under drought stress[J]. Shandong Agricultural Sciences, 2019, 51(10): 55-59. [52] 张恒益, 郑惠玲. 利用K均值聚类算法识别遗传疾病致病SNP位点[J]. 家畜生态学报, 2020, 41(12): 25-31. Zhang H Y, Zheng H L.Recognition of risk SNPs related to genetic diseases based on K-means clustering algorithm[J]. Journal of Domestic Animal Ecology, 2020, 41(12): 25-31. [53] Bai L, Liang J Y, Sui C, et al.Fast global k-means clustering based on local geometrical information[J]. Information Sciences, 2013, 245(10): 168-180. [54] 刘伟, 艾希珍, 梁文娟, 等. 低温弱光下水杨酸对黄瓜幼苗光合作用及抗氧化酶活性的影响[J]. 应用生态学报, 2009, 20(2): 441-445. Liu W, Ai X Z, Liang W J, et al.Effects of salicylic acid on the leaf photosynthesis and antioxidant enzyme activities of cucumber seedlings under low temperature and light intensity[J]. Chinese Journal of Applied Ecology, 2009, 20(2): 441-445. [55] 张玉翠, 王连翠. 低温对茶树叶片膜透性和保护酶活性的影响[J]. 北方园艺, 2010(9): 38-40. Zhang Y C, Wang L C.Effects of low temperature on membrane permeability and protective enzyme activities in tea leaves[J]. Northern Horticulture, 2010(9): 38-40. [56] 秦红艳, 沈育杰, 艾军, 等. 盐胁迫对不同葡萄品种叶片中叶绿素荧光参数的影响[J]. 中外葡萄与葡萄酒, 2010(5): 35-38. Qin H Y, Shen Y J, Ai J, et al.Effects of salt stress on shlorophyll fluorescence parameters of leaf in different grape varsities[J]. Sino-overseas Grapevine & Wine, 2010(5): 35-38. [57] 李学孚, 倪智敏, 吴月燕, 等. 盐胁迫对‘鄞红’葡萄光合特性及叶片细胞结构的影响[J]. 生态学报, 2015, 35(13): 4436-4444. Li X F, Ni Z M, Wu Y Y, et al.Effects of salt stress on photosynthetic characteristics and leaf cell structure of 'Yinhong' grape seedling[J]. Acta Ecologic Sinica, 2015, 35(13): 4436-4444. [58] Redmond S J, Heneghan C.A method for initialising the K-means clustering algorithm using kd-trees[J]. Pattern Recognition Letters, 2007, 28(8): 965-973. [59] 魏杰. 基于K-means聚类算法改进算法的研究[J]. 信息通信, 2018(5): 14-15. Wei J.Research on improved algorithms based on K-means clustering algorithm[J]. Information & Communications, 2018(5): 14-15. [60] 梁泽, 王玥瑶, 岳远紊, 等. 耦合遗传算法与RBF神经网络的PM2.5浓度预测模型[J]. 中国环境科学, 2020, 40(2): 523-529. Liang Z, Wang Y Y, Yue Y W, et al.A coupling model of genetic algorithm and RBF neural network for the prediction of PM2.5 concentration[J]. China Environmental Science. 2020, 40(2): 523-529. [61] 周佳俊, 龚道新, 蒋紫烟, 等. 基于BP神经网络的柑橘农药残留预测[J]. 湖南农业大学学报(自然科学版), 2022, 48(5): 572-577. Zhou J J, Gong D X, Jiang Z Y, et al.Prediction of pesticide residues in citrus using BP neural network[J]. Journal of Hunan Agricultural University (Natural Sciences), 2022, 48(5): 572-577. |