| [1] | Ma J F, Chen Z C, Shen RF.Molecular mechanisms of Al tolerance in gramineous plants[J]. Plant soil, 2014, 381: 1-12. | 
																													
																						| [2] | Hajiboland R, Rad SB, Barcelo J, et al.Mechanisms of aluminum-induced growth stimulation in tea(Camellia sinensis)[J]. Journal of Plant Nutrition and Soil Science, 2013, 176: 616-625. | 
																													
																						| [3] | Jacquie D S, Gabriel T, Zhao F J.Enviromental factors influencing aluminium accumulation in tea[J]. Plant soil, 2016, 400: 223-230. | 
																													
																						| [4] | Ryan, P R, Tyerman, S D, Sasaki T, et al. The identification of aluminum-resistance genes provides opportunities for enhancing crop production on acid soils[J]. Journal of Experimental Botany, 2011, 62: 9-20. | 
																													
																						| [5] | Nagata T, Haytsu M, Kosuge N.Aluminum kinetics in the tea plant using 27Al-NMR and 19F-NMR[J]. Phytochemsity, 1993, 32: 771-775. | 
																													
																						| [6] | Morita A, Horie H, Fujii Y, et al.Chemical forms of aluminum in xylem sap of tea plants (Camellia sinensis L.)[J]. Phytochemistry, 2004, 65(20): 75-80. | 
																													
																						| [7] | 刘艳丽, 金孝芳, 曹丹, 等. 茶树铝、氟富集研究进展[J]. 植物科学学报, 2016, 34(6): 972-977. | 
																													
																						| [8] | 黄鑫, 宋晓维, 陈玉琼. 茶树吸收富集氟的机制研究进展[J]. 茶叶科学, 2016, 36(6): 551-556. | 
																													
																						| [9] | 傅绍光. 铝氟交互下茶树铝迁移和转化的特征研究[D]. 金华: 浙江师范大学, 2009: 61-62. | 
																													
																						| [10] | Nagata T, Haytsu M, Kosuge N.Identification of aluminum forms in tea leaves by 27 Al-NMR[J]. Phytochemsity, 1992, 31(4): 1215-1218. | 
																													
																						| [11] | Githua M, Gathu N, Jane I M.Aas determination of aluminium leaves in tea and other plant grown in the same locality[J]. Journal of environmental science and health, 1995, 30(6): 1145-1154. | 
																													
																						| [12] | 于翠平. 茶树耐铝的基因型差异及机理研究[D]. 杭州: 浙江大学, 2012: 31-34. | 
																													
																						| [13] | 吴志丹, 江福英, 张磊. 茶树品种及采摘时期对茶叶铝含量的影响[J]. 茶叶学报, 2016, 57(1): 13-17. | 
																													
																						| [14] | Fung K F, Carr H P, Poon B H T, et al. A comparison of aluminium levels in tea products from Hong Kong markets and in varieties of tea plants from Hong Kong and India[J]. Chemosphere, 2009, 75: 955-962. | 
																													
																						| [15] | Gao H J, Zhao Q, Zhang X C, et al.Localization of fluoride and aluminum in subcellular fractions of tea leaves and roots[J]. Journal of Agricultural and Food Chemistry, 2014, 62(10): 2313-2319. | 
																													
																						| [16] | Tolrà R, Vogel-Miku K, Hajiboland R, et al.Localization of aluminium in tea ( Camellia sinensis ) leaves using low energy X-ray fluorescence spectro-microscopy[J]. Journal of Plant Research, 2011, 124(1): 165-172. | 
																													
																						| [17] | 王琼琼, 薛志慧, 陈志丹, 等. 不同茶树种质间氟铝元素积累特性的研究[J]. 热带作物学报, 2016, 37(5): 862-869. | 
																													
																						| [18] | 黄嫒. 丘陵红壤区不同种植年限茶园土壤铝形态与茶树体铝分布格局[D]. 南昌: 南昌大学, 2011: 25. | 
																													
																						| [19] | Tanmoy K, Indira S, Ranjit K P, et al.Aluminium dynamics from soil to tea plant(Camellia sinensis L.): Is it enhanced by municipal solid waste compost application?[J]. Chemosphere, 2015(119): 917-926. | 
																													
																						| [20] | 王敏, 宁秋燕, 石元值. 茶树幼苗对不同浓度铝的生理响应差异研究[J]. 茶叶科学, 2017, 37(4): 337-346. | 
																													
																						| [21] | 黄媛, 段小华, 胡小飞. 模拟酸雨和铝调控对茶叶主要化学品质与铝积累的影响[J]. 热带亚热带植物学报, 2011, 19(3): 254-259. | 
																													
																						| [22] | 段小华, 胡小飞, 邓泽元. 茶叶主要化学品质指标和茶树体部分微量元素的钙铝调控效应[J]. 西北植物学报, 2012, 32(5): 988-994. | 
																													
																						| [23] | Napaporn S L, Kerdchoechuen O, Laohakunjit N.Chemical qualities and phenolic compounds of Assam tea after soil drench application of selenium and aluminium[J]. Plant Soil, 2012, 356: 381-393. | 
																													
																						| [24] | Ruan J Y, Zhang F S, Wong M H.Effect of nitrogen formand phosphorus source on the growth, nutrient intake and rhizosphere soil property of Camellia sinensis L.[J]. Plant and Soil, 2000, 223: 63-71. | 
																													
																						| [25] | 李海生, 张志权. 不同铝水平下茶树对铝及矿质养分的吸收与累积[J]. 生态环境, 2007, 16(1): 186-190. | 
																													
																						| [26] | Hajiboland R, Bahrami-rad S, Bastani S. Aluminum alleviates boron-deficiency induced growth impairment in tea plants[J]. Biologia Plantarum, 2014, 58(4): 717-724. | 
																													
																						| [27] | Hajiboland R,Bastani S,Bahrami-Rad S, et al.Interactions between aluminum and boron in tea (Camellia sinensis) plants[J]. Acta physiologiae plantarum, 2015, 37(3): 1-13. | 
																													
																						| [28] | Hajiboland R, Barceló J, Poschenrieder C, et al.Amelioration of iron toxicity: A mechanism for aluminum-induced growth stimulation in tea plants[J]. Journal of Inorganic Biochemistry, 2013, 128: 183-187. | 
																													
																						| [29] | Yang Y, Liu Y, Huang C F, et al.Aluminium alleviates fluoride toxicity in tea (Camellia sinensis)[J]. Plant Soil, 2016, 402: 1-12. | 
																													
																						| [30] | 张显晨, 郜红建, 张正竹, 等. 铝对氟在茶树体内吸收与分配的影响[J]. 食品科学, 2013, 34(5): 147-150. | 
																													
																						| [31] | Zhang X C, Gao H J, Wu H H, et al.Ca2+ and CaM are involved in Al3+ pretreatment-promoted fluoride accumulation in tea plants (Camellia sinesis L.)[J]. Plant Physiology and Biochemistry, 2015, 96: 288-295. | 
																													
																						| [32] | Zhang X C, Gao H J, Yang T Y, et al.Al3+-promoted fluoride accumulation in tea plants (Camellia sinensis) was inhibited by an anion channel inhibitor DIDS[J]. International Journal of Molecular Sciences, 2016, 17: 57-71. | 
																													
																						| [33] | Xu Q S, Yu Y, Ding Z T, et al.Aluminum induced metabolic responses in two tea cultivars[J]. Plant Physiology and Biochemistry, 2016, 101: 162-172. | 
																													
																						| [34] | Mukhopadyay M, Bantawa P, Das A, et al.Changes of growth, photosynthesis and alteration of leaf antioxidative defense system of tea [Camellia sinensis (L.) O. Kuntze] seedlings under aluminum stress[J]. Biometals, 2012, 25: 1141-1154. | 
																													
																						| [35] | 李春雷, 倪德江. 铝对茶树光合特性和叶片超微结构的影响[J]. 湖北农业科学, 2014, 53(3): 604-606. | 
																													
																						| [36] | Li C L, Xu H M, Xu J, et al.Effects of aluminium on ultrastructure and antioxidant activity in leaves of tea plant[J]. Acta Physiologiae Plantarum, 2011, 33: 973-978. | 
																													
																						| [37] | Xu Q S, Yu Y, Ding Z T, et al.Aluminum induced physiological and proteomic responses in tea(Camellia sinensis) roots and leaves[J]. Plant Physiology and Biochemistry, 2017(115): 141-151. | 
																													
																						| [38] | 陆建良, 梁月荣. 铝对茶树等植物超氧化物歧化酶的影响[J]. 茶叶科学, 1997, 17(2): 197-200. | 
																													
																						| [39] | Morita A, Yanagisawa O, Takatsu S, et al.Mechanism for the detoxification of aluminum in roots of tea plant (Camellia sinensis (L.) Kuntze)[J]. Phytochemistry, 2008, 69(1): 147-153. | 
																													
																						| [40] | Hajiboland R, Poschenrieder C.Localization and compartmentation of Al in the leaves and roots of tea plants[J]. Phyton, 2015, 84(1): 86-100. | 
																													
																						| [41] | Marzena S R, Wojciech B.Pectins esterification in the apoplast of aluminum-treated pea root nodules[J]. Journal of Plant Physiology, 2015(184): 1-7. | 
																													
																						| [42] | Li D Q, Shu Z F, Ye X L, et al.Cell wall pectin methyl-esterification and organic acids of root tips involve in aluminum tolerance in Camellia sinensis[J]. Plant Physiology and Biochemistry, 2017(119): 265-274. | 
																													
																						| [43] | Zhu X F, Shi Y Z, Lei G J, et al.XTH31, encoding an in-vitro XEH/XET-active enzyme, regulates Al sensitivity by modulating in-vivo XET action, cell wall xyloglucan content and Al binding capacity in Arabidopsis[J]. Plant Cell, 2012, 24: 4731-4747. | 
																													
																						| [44] | Ryan P R, Delhaize E.The convergent evolution of aluminium resistance in plants exploits a convenient currency[J]. Functional Plant Biology, 2010, 37(4): 275-284. | 
																													
																						| [45] | Singh D, Chauhan S K.Organic acids of crop plants in aluminum detoxification[J]. Current Science, 2011, 100: 1509-1515. | 
																													
																						| [46] | Yang L T, Qi Y P, Jiang H X, et al.Roles of organic acid anion secretion in aluminium tolerance of higher plants[J]. BioMed Research International, 2013: 173682. | 
																													
																						| [47] | Morita A, Yanagisawa O, Maeda S, et al.Tea plant(Camellia sinensis L.) roots secrete oxalic acid and caffeine into medium containing aluminum[J]. Soil Science & Plant Nutrition, 2011(57): 796-802. | 
																													
																						| [48] | 刘腾腾, 郜红建, 宛晓春, 等. 铝对茶树根细胞膜透性和根系分泌有机酸的影响[J]. 茶叶科学, 2011, 31(5): 458-462. | 
																													
																						| [49] | Li Y, Huang J, Song X W, et al.An RNA-Seq transcriptome analysis revealing novel insights into aluminum tolerance and accumulation in tea plant[J]. Planta, 2017, 246: 91-103. | 
																													
																						| [50] | Wang M L, Li Q H, Xin H H, et al.Reliable reference genes for normalization of gene expression data in tea plants (Camellia sinensis) exposed to metal stresses[J]. Plos one, 2017, 12(4): e0175863. |