欢迎访问《茶叶科学》,今天是

茶树树冠不同冠层叶片光合作用特性的研究

  • 余海云 ,
  • 石元值 ,
  • 马立锋 ,
  • 伊晓云 ,
  • 阮建云
展开
  • 中国农业科学院茶叶研究所,农业部茶树生物学与资源利用重点实验室,浙江 杭州 310008
余海云(1987— ),女,湖北荆门人,硕士研究生,从事茶树栽培生理与生态方面研究。

收稿日期: 2013-03-26

  修回日期: 2013-05-10

  网络出版日期: 2019-09-04

基金资助

国家现代茶叶产业技术体系项目(CARS-23)、公益性行业(农业)专项资金项目(201303012)

Leaf Photosynthetic Traits at Different Canopies of Tea Plants

  • YU Hai-yun ,
  • SHI Yuan-zhi ,
  • MA Li-feng ,
  • YI Xiao-yun ,
  • RUAN Jian-yun
Expand
  • Tea Research Institute of Chinese Academy of Agricultural Sciences, Hangzhou 310008, China

Received date: 2013-03-26

  Revised date: 2013-05-10

  Online published: 2019-09-04

摘要

茶树树冠整体的光合能力是决定茶树生产力的主要因素。本文研究了10龄龙井43投产茶园茶树树冠表层(受光率100%)、中层(受光率50%~70%)、下层(受光率0%~15%)叶片的光合作用特性、生理生态指标的特点及其相互关系。结果表明,从树冠表层至下层叶片接受到的光合有效辐射显著降低,但空气CO2浓度以树冠下层最高;叶片比叶重、单位面积全氮和全碳含量、叶绿素含量均以表层显著高于下层,而以重量为基础的全氮和全碳含量没有表现出明显的冠层分布差异;表层和中层叶片的光响应曲线表现为典型的Farquhar模型,但下层叶片无类似特征;光饱和速率、气孔导度、蒸腾速率均以表层叶片最高、下层叶片最低,但胞间CO2浓度以下层叶片最高;表层和中层叶片光合氮效率差异不大,但显著高于下部叶片。这表明,冠层下部叶片光合作用速率下降的主要原因是光照强度减弱使光合系统活性和羧化效率明显降低,而气孔导度的下降可能不是主要影响因素。因此,如何采取科学的栽培技术,进而调节树冠叶片分布以提高茶树群体光合能力值得深入研究。

本文引用格式

余海云 , 石元值 , 马立锋 , 伊晓云 , 阮建云 . 茶树树冠不同冠层叶片光合作用特性的研究[J]. 茶叶科学, 2013 , 33(6) : 505 -511 . DOI: 10.13305/j.cnki.jts.2013.06.010

Abstract

The canopy photosynthetic capacity is one of the dominant factors determining the productivity of tea plants. The photosynthetic traits, physiological and ecological factors as well as their interactions of 10-year old tea plant (Longjing 43 cultivar) at surface, middle, low positions in the canopy receiving 100%, 50%~70%, 0%~15% photosynthetically active radiation (PAR) were investigated in this paper. The received PAR decreased sharply from the surface to low canopy, while CO2 concentration was the highest at low canopy. There were magnificent decreases of leaf mass area ratio (LMA), total nitrogen (NA), total carbon (CA), chlorophyll contents based on leaf area from the surface to low canopy. However, the contents of total N and C were not significantly different among positions in tea plant when calculated based on leaf mass. Leaves at the surface and middle positions, but not low canopy showed typical light response curves fitting well to the Farquhar model. The light-saturated photosynthesis rate (Pn), stomatal conductance (Gs), transpiration rate (Tr) also decreased markedly from surface canopy to low canopy, while concentration of intercellular CO2 (Ci) was the highest at low canopy. Photosynthetic nitrogen use efficiency (PNUE) of surface canopy and middle canopy were significantly higher than that of low canopy. The overall results suggested that the decreased Pn within the leaves of tea plant from surface to low canopy was mainly related to the reduced capacity of photosystem and carboxylation efficiency caused by decreased light intensity instead of low Gs. More research is needed to illustrate the optimum canopy structure shaped by rational agronomical management which could improve the canopy photosynthetic capacity of tea plants.

参考文献

[1] 骆耀平, 须海荣, 童启庆. 茶树良种苗期生物产量与光合特性的相关研究[J]. 茶叶, 1993, 19(2): 15-18.
[2] 陶汉之, 周良骝, 方一平, 等. 茶树蒸腾特性的研究[J]. 应用生态学报, 1995, 6(4): 349-354.
[3] 胡志敏, 童启庆, 庄晚芳. 浙江省十二个茶树良种光合特性的研究[J]. 浙江农业大学学报, 1988, 14(2): 155-160.
[4] 袁祖丽, 孙晓楠, 冯松田, 等. 引种茶树品种光合、荧光特性的比较研究[J]. 河南农业科学, 2010(7): 26-30.
[5] 彭晚霞, 王克林, 宋同清, 等. 施肥结构对茶树光合作用及其生态生理因子日变化的影响[J]. 生态学报, 2008, 28(1): 84-91.
[6] 林金科. 茶树光合作用的年变化[J]. 福建农业大学学报, 1999, 28(1): 38-42.
[7] Moran R, Porath D.Chlorophyll determination in intact tissues using N,N-dimethylformamide[J]. Plant Physiology, 1980, 65(3): 478-479.
[8] Farquhar G D, von Caemmerer S, Berry J A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species[J]. Planta, 1980, 149(1): 78-90.
[9] 张鹏骞, 张林源, 姚延梼. 不同杨树不同层面净光合速率差异及贡献率的研究[J]. 山西农业大学学报: 自然科学版, 2011, 31(4): 308-314.
[10] 林金科, 詹梓金, 赖明志. 铁观音茶树的光合特性[J]. 茶叶科学, 1999, 19(1): 35-40.
[11] Zhao P, Kriebitzsch W, Zhang Z Q.Gas exchange, chlorophyll and nitrogen contents in leaves of three common trees in middle Europe under two contrasting light regimes[J]. Journal of Tropical and Subtropical Botany, 1999, 7(2): 133-139.
[12] Oguchi R, Hikosaka K, Hirose T.Does the photosynthetic light-acclimation need change in leaf anatomy[J]. Plant Cell and Environment, 2003, 26(4): 505-512.
[13] 李合生. 现代植物生理学[M]. 北京: 高等教育出版社, 2005: 167-171.
[14] Wyka T P, Oleksyn R, Zytkowiak, et al. Responses of leaf structure and photosynthetic properties to intra-canopy light gradients: a common garden test with four broadleaf deciduous angiosperm and seven evergreen conifer tree species[J]. Oecologia, 2012, 170(1): 11-24.
[15] 何春霞, 李吉跃, 张燕香, 等. 5种绿化树种叶片比叶重、光合色素含量和δ13C的开度与方位差异[J]. 植物生态学报, 2010, 34(2): 134-143.
[16] Evans J R.Photosynthesis and nitrogen relationships in leaves of C3 plants[J]. Oecologia, 1989, 78(1): 9-19.
[17] Poorter H, Evans J R.Photosynthetic nitrogen-use efficiency of species that differ inherently in specific area[J]. Oecologia, 1998, 116(1/2): 26-37.
[18] Taub D R, Lerdau M T.Relationship between leaf nitrogen and photosynthetic rate for three NAD-ME and three NADP-ME C4 grasses[J]. American Journal of Botany, 2000, 87(3): 412-417.
[19] Hikosaka K, Hanba Y T, Hirose T, et al. Photosynthetic nitrogen-use efficiency in leaves of woody and herbaceous species[J]. Functional Ecology, 1998, 12(6): 896-905.
[20] Pierce S, Stirling C M, Baxter R.Pseudoviviparous reproduction of Poa alpine var. vivipara L. (Poaceae) during long-term exposure to elevated atmospheric CO2[J]. Annals of Botany, 2003, 91(6): 613-622.
文章导航

/