对60个低咖啡碱单株进行咖啡碱含量的HPLC测定和42对EST-SSR引物的分子变异分析。结果表明茶叶中咖啡碱鲜重的变化范围是0.38%~1.08%,低于亲本咖啡碱含量的单株有5份,符合低咖啡碱茶筛选的目标。42对EST-SSR引物在遗传群体中共检测出129个等位基因,每对引物可检测出2~7个等位基因,平均3.86个,平均Shannon-Weaver指数(I)为0.65;标记的多态性信息含量(PIC)平均为0.33,变化范围是0.03~0.68。初步鉴定出3个与咖啡碱变异相关联的分子标记,对低咖啡碱优异基因的筛选及低咖啡碱茶树新品种的选育具有一定的指导意义。
The caffeine content of 60 individuals of a low-caffeine population of tea plant was analyzed using HPLC and the molecular variance was studied using 42 EST-SSR markers, respectively. The results showed that the caffeine content of fresh weight ranged from 0.38% to 1.08%. Five individuals had lower caffeine content than female parent, and they can be used as breeding materials for further screening low-caffeine tea cultivars. One hundred and twenty-nine alleles were detected, each pair of primers could detect 2 to 7 alleles, an average of 3.86. The average number of Shannon-Weaver index (I) was 0.65. The polymorphism information content (PIC) of EST-SSR markers varied from 0.03 to 0.68, with average of 0.33. Three SSR markers, TM089, TM200 and TM211, related to variation of caffeine content were preliminary identified. It would be of important significance for screening excellent genetic resources and breeding new low-caffeine tea cultivars.
[1] 宛晓春. 茶叶生物化学: 第三版[M]. 北京: 中国农业出版社, 2003: 336.
[2] Bode AM, Dong ZG.The enigmatic effects of caffeine in cell cycle and cancer[J]. Cancer Letters, 2007, 247(1): 26-39.
[3] 吴命燕, 范方媛, 梁月荣, 等. 咖啡碱的生理功能及其作用机制[J]. 茶叶科学, 2010, 30(4): 235-242.
[4] Grosso LM, Bracken MB.Caffeine metabolism, genetics, and perinatal outcomes: A review of exposure assessment considerations during pregnancy[J]. Annals of Epidemiology, 2005, 15(6): 460-466.
[5] Tsuang YH, Sun JS, Chen LT, et al. Direct effects of caffeine on osteoblastic cells metabolism: the possible causal effect of caffeine on the formation of osteoporosis[J]. Journal of Orthopaedic Surgery and Research, 2006, 1(7): 1-7.
[6] 许勇泉, 尹军峰, 袁海波, 等. 茶叶脱咖啡因技术研究进展[J]. 茶叶科学, 2008, 28(1): 1-8.
[7] Gupta PK, Balyan HS, Sharma PC, et al. Microsatellites in plants: A new class of molecular markers[J]. Current Science, 1996, 70: 45-54.
[8] Hamwieh A, Udupa SM, Choumane W, et al. A genetic linkage map of Lens sp. based on microsatellite and AFLP markers and the localization of fusarium vascular wilt resistance[J]. Theoretical and Applied Genetics, 2005, 110: 669-677.
[9] Ausubel FM, Kingston RE, Seidman JG, et al.精编分子生物学实验指南: 第四版[M]. 马学军, 舒跃龙, 译. 北京: 科学出版社, 2004, 54-55.
[10] 乔婷婷, 马春雷, 周炎花, 等. 浙江省茶树地方品种与选育品种遗传多样性和群体结构的EST-SSR分析[J]. 作物学报, 2010, 36(5): 744-753.
[11] Ma JQ, Zhou YH, Ma CL, et al. Identification and characterization of 74 novel polymorphic EST-SSR markers in the tea plant, Camellia sinensis (Theaceae)[J]. American Journal of Botany, 2010, 97, e153-e156.
[12] Yao MZ, Ma CL, Qiao TT, et al. Diversity distribution and population structure of tea germplasms in China revealed by EST-SSR markers[J]. Tree Genetics & Genomes, 2012, 8: 205-220.
[13] 刘振, 王新超, 赵丽萍, 等. 基于EST-SSR的西南茶区茶树资源遗传多样性和亲缘关系分析[J]. 分子植物育种, 2008, 6(1): 100-110.
[14] Charters YM, Wilkinson MJ.The use of self-pollinated progenies as ‘in-groups’ for the genetic characterization of cocoa germplasm[J]. Theoretical and Applied Genetics, 2000, 100: 160-166.
[15] Liu K, Muse SV.PowerMarker: an integrated analysis environment for genetic marker data[J]. Bioinformatics, 2005, 21(9): 2128-2129.
[16] Nei M.Analysis of gene diversity in subdivided population[J]. Proceedings of the National Academy of Sciences of the United States of America, 1973, 70(12): 3321-3323.
[17] Botstein D, White RL, Skolnick M, et al. Construction of a genetic linkage maps in man using restriction fragment length polymorphisms[J]. The American Journal of Human Genetics, 1980, 32(3): 314-331.
[18] Kato M, Mizuno K, Fujimura T, et al. Purification and characterization of caffeine synthase from tea leaves[J]. Plant Physiology, 1999, 120: 579-586.
[19] Kato M, Mizuno K, Crozier A, et al. Caffeine synthase gene from tea leaves[J]. Nature, 2000, 406: 956-957.
[20] 冯艳飞, 梁月荣. 茶树S-腺苷甲硫氨酸合成酶基因的克隆和序列分析[J]. 茶叶科学, 2001, 21(1): 21-25.
[21] Keya CA, Crozier A, Ashihara H.Inhibition of caffeine biosynthesis in tea (Camellia sinensis) and coffee (Coffea arabica) plants by ribavirin[J]. FEBS Letters, 2003, 554(3): 473-477.
[22] Mohanpuria P, Kumar V, Ahuja PS, et al. Producing low-caffeine tea through post-transcriptional silencing of caffeine synthase mRNA[J]. Plant Molecular Biology, 2011, 76(6): 523-534.
[23] Mohanpuria P, Kumar V, Ahuja PS, et al. Agrobacterium-mediated silencing of caffeine synthesis through root transformation in Camellia sinensis L[J]. Molecular Biotechnology, 2011, 48(3): 235-243.