[1] 田中淳一. RAPDをぺ—スしたチャの连锁地图の作成と遗传解析への利用の可能性[J]. 茶业研究报告, 1996, 84(别册): 44~45.
[2] Hackett CA, Wachira FN, Paul S, et al. Construction of a genetic linkage map for Camellia sinensis (tea)[J]. Heredity, 2000, 85(4): 346~355.
[3] 黄建安, 李家贤, 黄意欢, 等. 茶树AFLP分子连锁图谱的构建[J]. 茶叶科学, 2005, 25(1): 7~15.
[4] 黄福平, 梁月荣, 陆建良, 等. 应用RAPD和ISSR分子标记构建茶树回交1代部分遗传图谱[J]. 茶叶科学, 2006, 26(3): 171~176.
[5] Kato M, Mizuno K, Crozier A, et al. Caffeine synthase gene from tea leaves[J]. Nature, 2000, 406: 956~957.
[6] Mizutani M, Nakanishi H, Ema J, et al. Cloning of β-primeverosidase from tea Leaves, a key enzyme in tea aroma formation[J]. Plant Physiology, 2002, 130: 2164~2176.
[7] 王朝霞, 李叶云, 江昌俊, 等. 茶树巯基蛋白酶抑制剂基因的cDNA克隆与序列分析[J]. 茶叶科学, 2005, 25(3): 177~182.
[8] 王朝霞, 江昌俊, 蔡海云. 茶树β-1,3-葡聚糖酶基因cDNA片段的克隆与序列分析[J]. 安徽教育学院学报, 2006, 24(3): 67~69,77.
[9] 杨贤强, 王岳飞, 陈留记, 等. 茶多酚化学[M]. 上海: 上海科学技术出版社, 2003.
[10] Martens S, Knott J, Seitz CA, et al. Impact of biochemical pre-studies on specific engineering strategies of flavonoid biosynthesis in plant tissues[J]. Biochemical Engineering Journal, 2003, 14: 227~235.
[11] Matsumoto S, Takeuchi A, Hayatsu M, et al. Molecular cloning of phenylalanine ammonium lyase cDNA and classification of varieties and cultivars of tea plants (Camellia sinensis) using a tea PAL cDNA probe[J]. Theor. Appl. Genet., 1994, 89: 671~675.
[12] Takeuchi A, Matsumoto S, Hayatsu M.Chalcone synthase from Camellia sinensis: isolation of the cDNA and the organspecific and sugar responsive expression of the genes[J]. Plant Cell Physiol, 1994(5): 1011~1018.
[13] Takeuchi A, Matsumoto S.Dihydroflavonol 4-reductase mRNA from Camellia sinensis. http://www.ncbi.nlm.nih.gov, Accessing No. AB018685.
[14] Singh K, Kumar S, Ahuja P S.Cloning and characterization of cDNA encoding trans-cinnamate 4-hydroxylase from Camellia sinensis (L.) O. Kuntze cv. UPASI-10. http://www.ncbi.nlm.nih.gov, Accessing No. AY641731.
[15] Rani A, Kumar S, Ahuja PS.Camellia sinensis 4-Coumaroyl CoA Ligase mRNA. http://www.ncbi.nlm.nih.gov, Accessing No. DQ194356.
[16] Rani A, Kumar S, Ahuja PS.Camellia sinensis Cultivar Upasi-10 Chalcone Isomerase (CHI) mRNA. http://www.ncbi.nlm.nih.gov, Accessing No. DQ120521.
[17] Chen L, Ma CL, Zhao LP.Molecular cloning of full-length cDNA of the chalcone isomerase (CHI) gene from Camellia sinensis (L.) O. Kuntze. http://www.ncbi.nlm.nih.gov, Accessing No. DQ904329.
[18] Singh K, Kumar S, Ahuja PS.2004 Molecular cloning of full length cDNA of flavanone 3-hydroxylase (f3h) gene from Camellia sinensis (L.) O. Kuntze cv. UPASI-10 http://www.ncbi.nlm.nih.gov, 2004, Accessing No. AY641730.
[19] Rani A, Kumar S, Ahuja PS.Camellia sinensis Flavonoid 3',5'-Hydroxylase mRNA. http://www.ncbi.nlm.nih.gov, Accessing No. DQ194358.
[20] Park JS, Kim JB, Kim YH.Camellia sinensis leucoanthocyanidin reductase (LCR) mRNA. http://www.ncbi.nlm.nih.gov, Accessing No. AY169404.
[21] Singh K, Kumar S, Ahuja PS.Cloning of full length cDNA encoding anthocyanidin synthase (ANS) from Camellia sinensis (L.) O. Kuntze cv. UPASI-10. http://www.ncbi.nlm.nih.gov, Accessing No. AY830416.
[22] Singh K, Kumar S, Ahuja PS.Molecular cloning of full length cDNA of leucoanthocyanidin reductase (LAR) gene from Camellia sinensis (L.) O. Kuntze cv. UPASI-10. http://www.ncbi.nlm.nih.gov, Accessing No. AY641729.
[23] 赵东, 刘祖生, 奚彪. 茶树多酚氧化酶基因的克隆及其序列比较[J]. 茶叶科学, 2001, 21(2): 94~98.
[24] Raizada J, Kumar S, Ahuja PS.Cloning and characterization of polyphenol oxidase gene in Camellia sinensis (L.) O. kuntze. http://www.ncbi.nlm.nih.gov, Accessing No. AY659975.
[25] Li B, Chen ZZ, Li QH.Cloning polyphenol oxidase in tea variety Camellia sinensis var. assamica cv. Yinghong 9. http://www.ncbi.nlm.nih.gov, Accessing No. DQ513313
[26] Kato M, Mizuno K, Fujimura T, et al. Purification and Characterization of Caffeine Synthase from Tea Leaves[J]. Plant Physiology, 1999, 120: 579~586.
[27] 张广辉, 梁月荣, 吴颖. 咖啡碱生物合成研究进展及在茶树育种中的应用[J]. 茶叶, 2005, 31(1): 18~23.
[28] Uefuji H, Ogita S, Yamaguchi Y, et al. Molecular cloning and functional characterization of three distinct N-methyltransferases involved in the caffeine biosynthetic pathway in coffee plants[J]. Plant Physiology, 2003, 132: 372~380.
[29] 吴颖, 梁月荣. S-腺苷甲硫氨酸在茶树生理代谢中的研究现状[J]. 茶叶, 2005, 31(2): 85~87.
[30] 冯艳飞, 梁月荣. 茶树S-腺苷甲硫氨酸合成酶基因的克隆和序列分析[J]. 茶叶科学, 2001, 21(1): 2l~25.
[31] Guo W, Sakata K, Watnabe N, et al. Geranyl-6-O-β-D-xylopranosyl-β-D-glucopyranoside isolated as aroma precursor from tea leaves for oolong tea[J]. Phytochem, 1993, 33:1373~1375.
[32] Guo W, Hosoi R, Sakata K, et al. (s)-linalyl,2-phenylethyl, and benzyl disaccharide glycosides isolated as aroma precursors from oolong tea leaves[J]. Biosci Biotech Biochem, 1994, 58(8): 1532~1534.
[33] Moon J H. Watanabe N, Ijima Y, et al. Cis- and trans-linalool 3,7-oxides and methyl salicylate glycosides and (z)-3-hexenylβ-D-glucopyranosides as aroma precursors from tea leaves for oolong tea[J]. Biosci Biotech Biochem, 1996, 60(11): 1815~1819.
[34] Guo W, Yamauchi K, Watanabe N, et a1. A primeverosidase as a main glyeosidase concerned with the alcoholic aroma formation in tea leaves[J]. Biosci Biotechnol Biochem, l995, 59: 962~964.
[35] Ijima, Ogawa K, Watanabe N, et a1. Characterization of β-primeverosidase, being concerned with alcoholic aroma formation in tea leaves to be processed into black tea, and preliminary observations on its substrate specificity[J]. J Agric Food Chem, 1998, 46: 1712~1718.
[36] Wang D, Kurasawa E, Yamaguchi, et a1. Analysis of glycosidically bound aroma precursors in tea leaves. 2 Changes in glycoside contents and glycosidase activities in tea leaves during the black tea manufacturing process[J]. J Agric Food Chem, 2001, 49: 1900~1903.
[37] 张正竹, 宛晓春, 坂田完三. 茶叶β-葡萄糖苷酶亲和层析纯化与性质研究[J]. 茶叶科学, 2005, 25(1): 16~20.
[38] Jiang CJ, Yang SL, Li YH, et al.Camellia sinensis beta-1,3-glucosidase-like mRNA. http://www.ncbi.nlm.nih.gov, Accessing No. AF537127.
[39] 李远华, 江昌俊, 余有本. 茶树β-葡萄糖苷酶基因mRNA的表达[J]. 南京农业大学学报, 2005, 28(2): 103~106.
[40] Rawat R, Gulati A, Hallan V, et al. Molecular characterization of beta-glucosidase from regional Kangra tea clone(Camellia sinensis
[41] Tomimoto Y, Ikehashi H, Kakeda K, et al. A pistil-specific PR-1 like protein of Camellia, its expression, sequence and genealogical position[J]. Breeding Sci, 1999, 49: 97~104.
[42] Singh K, Kumar S, Ahuja PS.Cloning and sequencing of catalase gene from Camellia sinensis (L.) O. Kuntze cv. UPASI-10. http://www.ncbi.nlm.nih.gov, Accessing No. AY641732.
[43] Singh K, Kumar S, Ahuja PS.Camellia sinensis HSP70 (hsp70) mRNA(partial cd). http://www.ncbi.nlm.nih.gov, Accessing No. AY694190.
[44] Singh K, Vyas D, Kumar S, et al.Cloning of cDNA encoding manganese superoxide dismutase (MnSOD) from Camellia sinensis (L.) O. Kuntze. http://www.ncbi.nlm.nih.gov, Accessing No. AY641734.
[45] Singh K, Kumar S, Ahuja PS.Camellia sinensis Cu/Zn superoxide dismutase mRNA. http://www.ncbi.nlm.nih.gov, Accessing No. AY694187.
[46] Chen L, Zhang YL, Zhao LP.Molecular cloning of full-length cDNA of the ACC oxidase gene from Camellia sinensis (L.) O. Kuntze. http://www.ncbi.nlm.nih.gov, Accessing No. DQ904328.
[47] Paul A, Kumar S, Ahuja PS.Camellia sinensis ascorbate peroxidase mRNA. http://www.ncbi.nlm.nih.gov, Accessing No. DQ442272.
[48] Paul A, Kumar S, Ahuja PS.Camellia sinensis metallothionin 1 mRNA. http://www.ncbi.nlm.nih.gov, Accessing No. DQ442270.
[49] Paul A, Kumar S, Ahuja PS.Camellia sinensis metallothionin 2 mRNA. http://www.ncbi.nlm.nih.gov, Accessing No. DQ442271.
[50] Raizada J, Kumar S, Ahuja PS.Camellia sinensis cullin mRNA, partial cds. http://www.ncbi.nlm.nih.gov, Accessing No. AY724780.
[51] Singh K, Kumar S, Ahuja PS.Cloning of complete cDNA coding for Histone 3 from Camellia sinensis (L.) O. Kuntze cv. UPASI-10. http://www.ncbi.nlm.nih.gov, Accessing No. AY787658.
[52] Fukamizu T, Shoyama Y, Sasaki K, et al.Studies on cell cycle in Camellia sinensis. http://www.ncbi.nlm.nih.gov, Accessing No. AB247279, AB247280, AB247281, AB247282.
[53] Paul A, Kumar S, Ahuja PS.Cloning of full length cDNA encoding serine/threonine protein kinase from Camellia sinensis (L.) O. Kuntze cv. Teenali. http://www.ncbi.nlm.nih.gov, Accessing No. DQ793217.
[54] Paul A, Kumar S, Ahuja PS.Cloning zinc finger protein mRNA from Camellia sinensis (L.) O. Kuntze cv. Teenali. http://www.ncbi.nlm.nih.gov, Accessing No. DQ869863.
[55] Zhao LP, Zhang YL, Chen L.Molecular cloning of full-length cDNA of the cyclophilin gene from Camellia sinensis (L.) O. Kuntze. http://www.ncbi.nlm.nih.gov, Accessing No. DQ904327.
[56] Prince LM, Parks CR.Phylogenetic relationships of Theaceae inferred from chloroplast DNA sequence data[J]. Am. J Bot, 2001, 88(12): 2309~2320.
[57] Anderberg AA, Rydin C, Kallersjo M.Phylogenetic relationships in the order Ericales s.l.: Analyses of molecular data from five genes from the plastid and mitochondrial genomes[J]. Am. J. Bot., 2002, 89(4): 677~687
[58] Raizada J, Kumar S, Ahuja PS.Camellia sinensis chloroplast photosystem I reaction center V mRNA(partial cds). http://www.ncbi.nlm.nih.gov, Accessing No. AY724779.
[59] Hu CY, Lin SF.Studies on the Variations in Leaf Characters and DNA Sequences of Tea Germplasm in Taiwan. National Taiwan Univerity Thesis, 2004.
[60] 韦朝领, 江昌俊, 陶汉之, 等. 茶树紫黄素脱环氧化酶基因的体外定点突变及其突变体的表达和活性鉴定[J]. 中国生物化学与分子生物学报, 2004, 20(1): 73~78.
[61] Park JS, Kim JB, Kim KH, et al.Camellia sinensis delta-6-desaturase (D6DES) mRNA. http:// www.ncbi.nlm.nih.gov, Accessing No. AY169402.
[62] Tanaka J, Taniguchi F.Isolation and Identification of Glutamine Synthetase of Tea. http://www.ncbi.nlm.nih.gov, Accessing No. AB115183.
[63] Yu M, Ye AH, Jiang CJ, et al.Cloning of ATP-sulfurylase cDNA from flower bud. http://www.ncbi.nlm.nih.gov, Accessing No. DQ444464.
[64] Kumar S, Kumar S.Identification of drought responsive but ABA non-responsive mRNAs in tea (Camellia sinensis). http://www.ncbi.nlm.nih.gov, Accessing No. BQ825883- BQ825885.
[65] Sandhu MS, Sharma P, Kumar S.Differential display mediated identification and cloning of putative chitinase from tea leaves experiencing drought stress. http:// www.ncbi.nlm.nih.gov, Accessing No. AY321461- AY321462.
[66] Singh K, Kumar S, Ahuja PS.Differential display mediated generation of expressed sequence tags from vegetative bud and first leaf of Camellia sinensis (L.) O. Kuntze cv. UPASI-10 experiencing drought stress. http://www.ncbi.nlm.nih.gov, Accessing No. DN976085-DN976213,DR397420.
[67] Park JS, Kim JB, Hahn BS, et al. EST analysis of genes involved in secondary metabolism in Camellia sinensis (tea), using suppression subtractive hybridization[J]. Plant Sci, 2004, 166: 953~961.
[68] Chen L, Zhao LP, Gao QK.Generation and analysis of expressed sequence tags from the tender shoots cDNA library of tea plnat (Camellia sinensis)[J]. Plant Sci, 2005, 18: 359~363.
[69] Liu SQ, Li J, Huang JA, et al.Screening and Identification of Novel Genes Involved in Biosynthesis of Theanine in Camellia sinensis Plant. http://www.ncbi.nlm.nih.gov, Accessing No. DY523272-DY523324.