茶叶科学 ›› 2007, Vol. 27 ›› Issue (2): 95-103.doi: 10.13305/j.cnki.jts.2007.02.001
• • 下一篇
陆建良1, 林晨1, 骆颖颖2, 张广辉1, 梁月荣1, *
收稿日期:
2006-11-17
修回日期:
2007-01-29
出版日期:
2007-06-25
发布日期:
2019-09-11
通讯作者:
* 梁月荣,yrliang@zju.edu.cn
作者简介:
陆建良(1970— ),男,副教授,主要从事茶树生物技术与资源利用教学和研究。
基金资助:
LU Jian-liang1, LIN Chen1, LUO Ying-ying2, ZHANG Guang-hui1, LIANG Yue-rong1, *
Received:
2006-11-17
Revised:
2007-01-29
Online:
2007-06-25
Published:
2019-09-11
摘要: 根据发表的文章以及对美国生物技术信息中心(NCBI)的检索结果,从茶树儿茶素类代谢相关基因、咖啡碱代谢相关基因、茶香气形成相关基因等方面介绍茶树重要功能基因分离研究进展。
中图分类号:
陆建良, 林晨, 骆颖颖, 张广辉, 梁月荣. 茶树重要功能基因克隆研究进展[J]. 茶叶科学, 2007, 27(2): 95-103. doi: 10.13305/j.cnki.jts.2007.02.001.
LU Jian-liang, LIN Chen, LUO Ying-ying, ZHANG Guang-hui, LIANG Yue-rong. Progress in Functional Gene Cloning of Camellia sinensis[J]. Journal of Tea Science, 2007, 27(2): 95-103. doi: 10.13305/j.cnki.jts.2007.02.001.
[1] | 田中淳一. RAPDをぺ—スしたチャの连锁地图の作成と遗传解析への利用の可能性[J]. 茶业研究报告, 1996, 84(别册): 44~45. |
[2] | Hackett CA, Wachira FN, Paul S, et al. Construction of a genetic linkage map for Camellia sinensis (tea)[J]. Heredity, 2000, 85(4): 346~355. |
[3] | 黄建安, 李家贤, 黄意欢, 等. 茶树AFLP分子连锁图谱的构建[J]. 茶叶科学, 2005, 25(1): 7~15. |
[4] | 黄福平, 梁月荣, 陆建良, 等. 应用RAPD和ISSR分子标记构建茶树回交1代部分遗传图谱[J]. 茶叶科学, 2006, 26(3): 171~176. |
[5] | Kato M, Mizuno K, Crozier A, et al. Caffeine synthase gene from tea leaves[J]. Nature, 2000, 406: 956~957. |
[6] | Mizutani M, Nakanishi H, Ema J, et al. Cloning of β-primeverosidase from tea Leaves, a key enzyme in tea aroma formation[J]. Plant Physiology, 2002, 130: 2164~2176. |
[7] | 王朝霞, 李叶云, 江昌俊, 等. 茶树巯基蛋白酶抑制剂基因的cDNA克隆与序列分析[J]. 茶叶科学, 2005, 25(3): 177~182. |
[8] | 王朝霞, 江昌俊, 蔡海云. 茶树β-1,3-葡聚糖酶基因cDNA片段的克隆与序列分析[J]. 安徽教育学院学报, 2006, 24(3): 67~69,77. |
[9] | 杨贤强, 王岳飞, 陈留记, 等. 茶多酚化学[M]. 上海: 上海科学技术出版社, 2003. |
[10] | Martens S, Knott J, Seitz CA, et al. Impact of biochemical pre-studies on specific engineering strategies of flavonoid biosynthesis in plant tissues[J]. Biochemical Engineering Journal, 2003, 14: 227~235. |
[11] | Matsumoto S, Takeuchi A, Hayatsu M, et al. Molecular cloning of phenylalanine ammonium lyase cDNA and classification of varieties and cultivars of tea plants (Camellia sinensis) using a tea PAL cDNA probe[J]. Theor. Appl. Genet., 1994, 89: 671~675. |
[12] | Takeuchi A, Matsumoto S, Hayatsu M.Chalcone synthase from Camellia sinensis: isolation of the cDNA and the organspecific and sugar responsive expression of the genes[J]. Plant Cell Physiol, 1994(5): 1011~1018. |
[13] | Takeuchi A, Matsumoto S.Dihydroflavonol 4-reductase mRNA from Camellia sinensis. http://www.ncbi.nlm.nih.gov, Accessing No. AB018685. |
[14] | Singh K, Kumar S, Ahuja P S.Cloning and characterization of cDNA encoding trans-cinnamate 4-hydroxylase from Camellia sinensis (L.) O. Kuntze cv. UPASI-10. http://www.ncbi.nlm.nih.gov, Accessing No. AY641731. |
[15] | Rani A, Kumar S, Ahuja PS.Camellia sinensis 4-Coumaroyl CoA Ligase mRNA. http://www.ncbi.nlm.nih.gov, Accessing No. DQ194356. |
[16] | Rani A, Kumar S, Ahuja PS.Camellia sinensis Cultivar Upasi-10 Chalcone Isomerase (CHI) mRNA. http://www.ncbi.nlm.nih.gov, Accessing No. DQ120521. |
[17] | Chen L, Ma CL, Zhao LP.Molecular cloning of full-length cDNA of the chalcone isomerase (CHI) gene from Camellia sinensis (L.) O. Kuntze. http://www.ncbi.nlm.nih.gov, Accessing No. DQ904329. |
[18] | Singh K, Kumar S, Ahuja PS.2004 Molecular cloning of full length cDNA of flavanone 3-hydroxylase (f3h) gene from Camellia sinensis (L.) O. Kuntze cv. UPASI-10 http://www.ncbi.nlm.nih.gov, 2004, Accessing No. AY641730. |
[19] | Rani A, Kumar S, Ahuja PS.Camellia sinensis Flavonoid 3',5'-Hydroxylase mRNA. http://www.ncbi.nlm.nih.gov, Accessing No. DQ194358. |
[20] | Park JS, Kim JB, Kim YH.Camellia sinensis leucoanthocyanidin reductase (LCR) mRNA. http://www.ncbi.nlm.nih.gov, Accessing No. AY169404. |
[21] | Singh K, Kumar S, Ahuja PS.Cloning of full length cDNA encoding anthocyanidin synthase (ANS) from Camellia sinensis (L.) O. Kuntze cv. UPASI-10. http://www.ncbi.nlm.nih.gov, Accessing No. AY830416. |
[22] | Singh K, Kumar S, Ahuja PS.Molecular cloning of full length cDNA of leucoanthocyanidin reductase (LAR) gene from Camellia sinensis (L.) O. Kuntze cv. UPASI-10. http://www.ncbi.nlm.nih.gov, Accessing No. AY641729. |
[23] | 赵东, 刘祖生, 奚彪. 茶树多酚氧化酶基因的克隆及其序列比较[J]. 茶叶科学, 2001, 21(2): 94~98. |
[24] | Raizada J, Kumar S, Ahuja PS.Cloning and characterization of polyphenol oxidase gene in Camellia sinensis (L.) O. kuntze. http://www.ncbi.nlm.nih.gov, Accessing No. AY659975. |
[25] | Li B, Chen ZZ, Li QH.Cloning polyphenol oxidase in tea variety Camellia sinensis var. assamica cv. Yinghong 9. http://www.ncbi.nlm.nih.gov, Accessing No. DQ513313 |
[26] | Kato M, Mizuno K, Fujimura T, et al. Purification and Characterization of Caffeine Synthase from Tea Leaves[J]. Plant Physiology, 1999, 120: 579~586. |
[27] | 张广辉, 梁月荣, 吴颖. 咖啡碱生物合成研究进展及在茶树育种中的应用[J]. 茶叶, 2005, 31(1): 18~23. |
[28] | Uefuji H, Ogita S, Yamaguchi Y, et al. Molecular cloning and functional characterization of three distinct N-methyltransferases involved in the caffeine biosynthetic pathway in coffee plants[J]. Plant Physiology, 2003, 132: 372~380. |
[29] | 吴颖, 梁月荣. S-腺苷甲硫氨酸在茶树生理代谢中的研究现状[J]. 茶叶, 2005, 31(2): 85~87. |
[30] | 冯艳飞, 梁月荣. 茶树S-腺苷甲硫氨酸合成酶基因的克隆和序列分析[J]. 茶叶科学, 2001, 21(1): 2l~25. |
[31] | Guo W, Sakata K, Watnabe N, et al. Geranyl-6-O-β-D-xylopranosyl-β-D-glucopyranoside isolated as aroma precursor from tea leaves for oolong tea[J]. Phytochem, 1993, 33:1373~1375. |
[32] | Guo W, Hosoi R, Sakata K, et al. (s)-linalyl,2-phenylethyl, and benzyl disaccharide glycosides isolated as aroma precursors from oolong tea leaves[J]. Biosci Biotech Biochem, 1994, 58(8): 1532~1534. |
[33] | Moon J H. Watanabe N, Ijima Y, et al. Cis- and trans-linalool 3,7-oxides and methyl salicylate glycosides and (z)-3-hexenylβ-D-glucopyranosides as aroma precursors from tea leaves for oolong tea[J]. Biosci Biotech Biochem, 1996, 60(11): 1815~1819. |
[34] | Guo W, Yamauchi K, Watanabe N, et a1. A primeverosidase as a main glyeosidase concerned with the alcoholic aroma formation in tea leaves[J]. Biosci Biotechnol Biochem, l995, 59: 962~964. |
[35] | Ijima, Ogawa K, Watanabe N, et a1. Characterization of β-primeverosidase, being concerned with alcoholic aroma formation in tea leaves to be processed into black tea, and preliminary observations on its substrate specificity[J]. J Agric Food Chem, 1998, 46: 1712~1718. |
[36] | Wang D, Kurasawa E, Yamaguchi, et a1. Analysis of glycosidically bound aroma precursors in tea leaves. 2 Changes in glycoside contents and glycosidase activities in tea leaves during the black tea manufacturing process[J]. J Agric Food Chem, 2001, 49: 1900~1903. |
[37] | 张正竹, 宛晓春, 坂田完三. 茶叶β-葡萄糖苷酶亲和层析纯化与性质研究[J]. 茶叶科学, 2005, 25(1): 16~20. |
[38] | Jiang CJ, Yang SL, Li YH, et al.Camellia sinensis beta-1,3-glucosidase-like mRNA. http://www.ncbi.nlm.nih.gov, Accessing No. AF537127. |
[39] | 李远华, 江昌俊, 余有本. 茶树β-葡萄糖苷酶基因mRNA的表达[J]. 南京农业大学学报, 2005, 28(2): 103~106. |
[40] | Rawat R, Gulati A, Hallan V, et al. Molecular characterization of beta-glucosidase from regional Kangra tea clone(Camellia sinensis |
[41] | Tomimoto Y, Ikehashi H, Kakeda K, et al. A pistil-specific PR-1 like protein of Camellia, its expression, sequence and genealogical position[J]. Breeding Sci, 1999, 49: 97~104. |
[42] | Singh K, Kumar S, Ahuja PS.Cloning and sequencing of catalase gene from Camellia sinensis (L.) O. Kuntze cv. UPASI-10. http://www.ncbi.nlm.nih.gov, Accessing No. AY641732. |
[43] | Singh K, Kumar S, Ahuja PS.Camellia sinensis HSP70 (hsp70) mRNA(partial cd). http://www.ncbi.nlm.nih.gov, Accessing No. AY694190. |
[44] | Singh K, Vyas D, Kumar S, et al.Cloning of cDNA encoding manganese superoxide dismutase (MnSOD) from Camellia sinensis (L.) O. Kuntze. http://www.ncbi.nlm.nih.gov, Accessing No. AY641734. |
[45] | Singh K, Kumar S, Ahuja PS.Camellia sinensis Cu/Zn superoxide dismutase mRNA. http://www.ncbi.nlm.nih.gov, Accessing No. AY694187. |
[46] | Chen L, Zhang YL, Zhao LP.Molecular cloning of full-length cDNA of the ACC oxidase gene from Camellia sinensis (L.) O. Kuntze. http://www.ncbi.nlm.nih.gov, Accessing No. DQ904328. |
[47] | Paul A, Kumar S, Ahuja PS.Camellia sinensis ascorbate peroxidase mRNA. http://www.ncbi.nlm.nih.gov, Accessing No. DQ442272. |
[48] | Paul A, Kumar S, Ahuja PS.Camellia sinensis metallothionin 1 mRNA. http://www.ncbi.nlm.nih.gov, Accessing No. DQ442270. |
[49] | Paul A, Kumar S, Ahuja PS.Camellia sinensis metallothionin 2 mRNA. http://www.ncbi.nlm.nih.gov, Accessing No. DQ442271. |
[50] | Raizada J, Kumar S, Ahuja PS.Camellia sinensis cullin mRNA, partial cds. http://www.ncbi.nlm.nih.gov, Accessing No. AY724780. |
[51] | Singh K, Kumar S, Ahuja PS.Cloning of complete cDNA coding for Histone 3 from Camellia sinensis (L.) O. Kuntze cv. UPASI-10. http://www.ncbi.nlm.nih.gov, Accessing No. AY787658. |
[52] | Fukamizu T, Shoyama Y, Sasaki K, et al.Studies on cell cycle in Camellia sinensis. http://www.ncbi.nlm.nih.gov, Accessing No. AB247279, AB247280, AB247281, AB247282. |
[53] | Paul A, Kumar S, Ahuja PS.Cloning of full length cDNA encoding serine/threonine protein kinase from Camellia sinensis (L.) O. Kuntze cv. Teenali. http://www.ncbi.nlm.nih.gov, Accessing No. DQ793217. |
[54] | Paul A, Kumar S, Ahuja PS.Cloning zinc finger protein mRNA from Camellia sinensis (L.) O. Kuntze cv. Teenali. http://www.ncbi.nlm.nih.gov, Accessing No. DQ869863. |
[55] | Zhao LP, Zhang YL, Chen L.Molecular cloning of full-length cDNA of the cyclophilin gene from Camellia sinensis (L.) O. Kuntze. http://www.ncbi.nlm.nih.gov, Accessing No. DQ904327. |
[56] | Prince LM, Parks CR.Phylogenetic relationships of Theaceae inferred from chloroplast DNA sequence data[J]. Am. J Bot, 2001, 88(12): 2309~2320. |
[57] | Anderberg AA, Rydin C, Kallersjo M.Phylogenetic relationships in the order Ericales s.l.: Analyses of molecular data from five genes from the plastid and mitochondrial genomes[J]. Am. J. Bot., 2002, 89(4): 677~687 |
[58] | Raizada J, Kumar S, Ahuja PS.Camellia sinensis chloroplast photosystem I reaction center V mRNA(partial cds). http://www.ncbi.nlm.nih.gov, Accessing No. AY724779. |
[59] | Hu CY, Lin SF.Studies on the Variations in Leaf Characters and DNA Sequences of Tea Germplasm in Taiwan. National Taiwan Univerity Thesis, 2004. |
[60] | 韦朝领, 江昌俊, 陶汉之, 等. 茶树紫黄素脱环氧化酶基因的体外定点突变及其突变体的表达和活性鉴定[J]. 中国生物化学与分子生物学报, 2004, 20(1): 73~78. |
[61] | Park JS, Kim JB, Kim KH, et al.Camellia sinensis delta-6-desaturase (D6DES) mRNA. http:// www.ncbi.nlm.nih.gov, Accessing No. AY169402. |
[62] | Tanaka J, Taniguchi F.Isolation and Identification of Glutamine Synthetase of Tea. http://www.ncbi.nlm.nih.gov, Accessing No. AB115183. |
[63] | Yu M, Ye AH, Jiang CJ, et al.Cloning of ATP-sulfurylase cDNA from flower bud. http://www.ncbi.nlm.nih.gov, Accessing No. DQ444464. |
[64] | Kumar S, Kumar S.Identification of drought responsive but ABA non-responsive mRNAs in tea (Camellia sinensis). http://www.ncbi.nlm.nih.gov, Accessing No. BQ825883- BQ825885. |
[65] | Sandhu MS, Sharma P, Kumar S.Differential display mediated identification and cloning of putative chitinase from tea leaves experiencing drought stress. http:// www.ncbi.nlm.nih.gov, Accessing No. AY321461- AY321462. |
[66] | Singh K, Kumar S, Ahuja PS.Differential display mediated generation of expressed sequence tags from vegetative bud and first leaf of Camellia sinensis (L.) O. Kuntze cv. UPASI-10 experiencing drought stress. http://www.ncbi.nlm.nih.gov, Accessing No. DN976085-DN976213,DR397420. |
[67] | Park JS, Kim JB, Hahn BS, et al. EST analysis of genes involved in secondary metabolism in Camellia sinensis (tea), using suppression subtractive hybridization[J]. Plant Sci, 2004, 166: 953~961. |
[68] | Chen L, Zhao LP, Gao QK.Generation and analysis of expressed sequence tags from the tender shoots cDNA library of tea plnat (Camellia sinensis)[J]. Plant Sci, 2005, 18: 359~363. |
[69] | Liu SQ, Li J, Huang JA, et al.Screening and Identification of Novel Genes Involved in Biosynthesis of Theanine in Camellia sinensis Plant. http://www.ncbi.nlm.nih.gov, Accessing No. DY523272-DY523324. |
[1] | 董圆, 张永恒, 肖烨子, 余有本. 茶树BZR1基因家族的鉴定及CsBZR1-5响应干旱胁迫的分子机理研究[J]. 茶叶科学, 2025, 45(1): 15-28. |
[2] | 朱倩, 邵陈禹, 周彪, 刘硕谦, 刘仲华, 田娜. 茶树ICE基因家族鉴定及CsICE43克隆和低温表达分析[J]. 茶叶科学, 2025, 45(1): 43-60. |
[3] | 徐文鸾, 温晓菊, 贾雨轩, 倪德江, 王明乐, 陈玉琼. 茶树果胶甲酯酶及其抑制子家族基因的鉴定及CsPME55参与氟胁迫响应的功能分析[J]. 茶叶科学, 2024, 44(6): 869-886. |
[4] | 杨楠, 李转, 刘玫辰, 马骏杰, 石云桃, 魏湘凝, 林阳顺, 毛宇源, 高水练. 钾营养对茶树EGCG生物合成的调控作用研究[J]. 茶叶科学, 2024, 44(6): 887-900. |
[5] | 赵茜, 刘倩, 蔡何佳奕, 何婕绮, 方筠雅, 刘雨欣, 陈超, 郑曜东, 张天经, 余文娟, 杨广. 干旱低温复合胁迫对茶树光合生理特性的影响及模拟预测[J]. 茶叶科学, 2024, 44(6): 901-916. |
[6] | 刘晓璐, 朱亚兰, 于敏, 盖新月, 范延艮, 孙平, 黄晓琴. 低温胁迫下茶树叶片细胞壁结构变化及光合特性[J]. 茶叶科学, 2024, 44(6): 917-927. |
[7] | 赵建诚, 倪惠菁, 王波, 蔡春菊, 杨振亚. 毛竹立竹密度对林下茶树生理生长和茶叶品质的影响[J]. 茶叶科学, 2024, 44(6): 928-940. |
[8] | 杨肖委, 沈强, 罗金龙, 张拓, 杨婷, 戴宇樵, 刘忠英, 李琴, 王家伦. 基于改进YOLOv8n的茶树嫩芽识别[J]. 茶叶科学, 2024, 44(6): 949-959. |
[9] | 鲁薇, 邬晓龙, 胡贤春, 郝勇, 刘春艳. 茶树接种AM真菌在干旱胁迫下的生理响应[J]. 茶叶科学, 2024, 44(5): 718-734. |
[10] | 刘昱, 杨培迪, 张培凯, 詹文礼, 李游, 姚苏航, 赵洋, 成杨, 刘振, 沈程文. 不同茶树品种叶片细胞壁氟富集差异探究[J]. 茶叶科学, 2024, 44(5): 735-746. |
[11] | 侯智炜, 吕永铭, 马宽, 张汇源, 顾哲, 张然, 李乐, 金俞谷, 苏祝成, 陈红平. 不同茶树品种的径山茶挥发性成分差异研究[J]. 茶叶科学, 2024, 44(5): 747-762. |
[12] | 陈世春, 江宏燕, 廖姝然, 陈亭旭, 牛金志, 王晓庆. 我国茶毛虫及其布尼亚病毒(EpBYV)的遗传多样性分析[J]. 茶叶科学, 2024, 44(5): 793-806. |
[13] | 王娟, 涂一怡, 吕务云, 陈易佳, 李士朴, 王玉春, 陈雅楠. 茶树一种新枝条枯萎病病原菌鉴定及防治药剂筛选[J]. 茶叶科学, 2024, 44(5): 807-815. |
[14] | 孙娟, 陈慧, 刘关华, 张瀚, 黄福印, 王玉玺, 王诺, 保德孟, 施江, 戴伟东, 陈健, 付建玉. 茶树γ-氨基丁酸代谢途径对早期茶尺蠖取食为害的响应[J]. 茶叶科学, 2024, 44(5): 816-830. |
[15] | 张亚真, 钟思彤, 陈志辉, 孔祥瑞, 单睿阳, 郑士琴, 余文权, 陈常颂. 不同黄化茶树种质中咖啡碱合成部位的研究[J]. 茶叶科学, 2024, 44(4): 575-584. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|