利用cDNA-AFLP技术分析了茶树在低温胁迫下的基因表达差异。用16对引物(256个组合)对三个样品池进行了差异条带的筛选,结果表明,在冷胁迫不同处理时期相关基因表达存在显著差异,共获得了86个差异片段。在选择回收的10条差异表达cDNA片段中,经克隆测序,Blast序列同源性检索,显示其中片段1与一种低温和盐胁迫响应蛋白有77%的同源性,片段5与拟南芥冷诱导表达相关60 s ribosomal protein L7(RPL7B)有89%的同源性;片段8与一种逆境诱导蛋白(Stress-induced H1-Histone protein)有79%的同源性;片段9与干旱条件下的EST序列有着较高的同源性,其它6个片段在GenBank数据库中未找到相似序列,可能为新基因。
The differential expression was investigated between cold-induced and normal environment in tea plant (Camellia sinensis) with cDNA-AFLP (cDNA Amplified Fragments Length Polymorphism). Expression profiles were generated around 86 special cDNA fragments (16 pairs primer, 256 primer combinations). Ten differentially expressed transcript-derived fragments were isolated. Cha1 revealed similarities (77%) to one kind of low temperature and salt responsive protein in Arabidopsis thaliana. Cha5 revealed similarities (89%) to Arabidopsis thaliana 60 S ribosomal protein L7 (RPL7B), ChaH8 had high similarities (79%) to Nicotiana tabacum A10 mRNA for stress-inducible H1 histone-like protein. Cha9 had high similarities to Populus EST from severe drought-stressed opposite wood. Other 6 fragments showed no homology to the known sequences in GenBank, perhaps they were new genes.
[1] 邹琦. 植物生理生化实验指导[M]. 北京: 中国农业出版社, 1995
[2] 张志良, 翟伟菁. 植物生理学实验指导(第3版)[M]. 北京: 高等教育出版社, 2003(3): 258~259.
[3] 宛晓春. 茶叶生物化学(第3版)[M]. 北京: 中国农业出版社, 2003.
[4] 李卫, 孙中海, 章文才, 等. 柑橘抗寒育种早期鉴定的一种指标[J]. 植物学报, 1998,40(9):827~830.
[5] 杨寅桂, 陈劲枫. 适于cDNA-AFLP的黄瓜总RNA快速高效提取方法[J]. 江西农业大学学报, 2007(1): 129~131.
[6] Bachem C, Heven R, Bruijn Z, et al. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development[J]. Plant Journal, 1996, 9(6): 745~753.
[7] 王新超, 赵丽萍, 姚明哲, 等. 安吉白茶正常与白化叶片基因表达差异的初步研究[J]. 茶叶科学, 2008, 28(1): 50~55.
[8] 李德葆, 金庆超, 童海涛. 稻瘟病菌附着胞发育相关信号传递研究进展[J]. 浙江大学学报, 2006(3): 45~48.
[9] Cleff M D.Proline accumulation during the environmental stress[J]. Crop Science, 1983, 23(1): 23~26.
[10] 童建华, 刘华英, 鲁旭东. mRNA差异显示技术及其在植物研究中的应用[J]. 农业与技术, 2004, (04): 109~111.
[11] 余梅, 江昌俊, 叶爱华, 等. 利用cDNA-AFLP技术研究茶树花蕾发育基因差异表达片段[J]. 茶叶科学, 2007, 27(3): 259~264.
[12] 梅菊芬,王新超,杨亚军,等. 茶树冷驯化过程中基因表达差异的初步分析[J]. 茶叶科学, 2007(4):286~292.
[13] Pieter Vos, Rene Hogers, Marjo Bleeker, et al. AFLP: A new technique for DNA finger printing[J].Nucleic Acids Research, 1995, 21:4407~4414.
[14] Juan Cape L, José A, Jarillo, et al. Two Homologous Low-Temperature-lnducible Cenes from Arabidopsis Encode Highly Hydrophobic Proteins[J]. Plant physiology, 1997(115): 569~576.
[15] John Dresios, Armaz Aschrafi.Cold stress-induced protein Rbm3 binds 60s ribosomal subunits,alters microRNA levels and enhances global protein synthesis[J]. PNAS, 2005, 6(102): 1865~1870.
[16] A B Krech, D Wulff, K D Rasser, et al. Plant chromosomal HMGI/Y proteins and histone H1 exhibit a protein domain of common origin[J]. Gene, 1999, 230: 1~5.
[17] Sergi Munné-Bosch, Vasiliki Falara, Irene Pateraki, et al.Physiological and molecular responses of the isoprenoid biosynthetic pathway in a drought-resistant Mediterranean shrub, Cistus creticus exposed to water deficit[J]. Plant physiology, 2008, 165: 805~812.