欢迎访问《茶叶科学》,今天是

茶叶揉捻的数学模型

  • 杨远庆 ,
  • 尹杰
展开
  • 贵州大学农学院园艺系,贵州 贵阳 550025
杨远庆(1957-),男,贵州大学副教授,主要从事茶学教学与研究。

收稿日期: 2002-10-12

  修回日期: 2003-01-06

  网络出版日期: 2019-09-16

The Mathematical Model of Tea Rolling

  • YANG Yuan-qing ,
  • YIN Jie
Expand
  • Department of Horticulture, Guizhou University, Guiyang 550025, China

Received date: 2002-10-12

  Revised date: 2003-01-06

  Online published: 2019-09-16

摘要

茶叶揉捻中,成条率随揉捻时间的增加而表现出二次曲线变化规律,其数学模型为: y=5.6277x–0.077x2–17.1439; 细胞破损率随揉捻时间的增加而表现出指数曲线的变化规律,y=85.3e–11.9/x;为了提高绿茶品质,揉捻时间宜控制在30~40βmin。

本文引用格式

杨远庆 , 尹杰 . 茶叶揉捻的数学模型[J]. 茶叶科学, 2003 , 23(1) : 38 -40 . DOI: 10.13305/j.cnki.jts.2003.01.008

Abstract

In tea rolling, the rolled twig rate is expressed as the regularity of twice curve equation with the extension of rolling time, the mathematical equation is: y=5.6277x–0.077x2–17.1439 and the broken cell rate is expressed as the regularity of the natural logarithm curve equation, the mathematical equation is: y=85.3e-11.9/x . For improving the quality of tea, the rolling time would be controlled between 30~40βminutes.

参考文献

[1] 陈椽,等. 制茶学. 北京:农业出版社,1989.
[2] 张家驹,等. 茶叶试验分析方法. 北京:农业出版社,1985.
文章导航

/