欢迎访问《茶叶科学》,今天是

茶多酚对肠道微生物的调节作用研究进展

  • 周方 ,
  • 欧阳建 ,
  • 黄建安 ,
  • 刘仲华
展开
  • 1. 湖南农业大学茶学教育部重点实验室,湖南 长沙 410128;
    2. 国家植物功能成分利用工程技术研究中心,湖南 长沙 410128;
    3. 湖南省植物功能成分利用协同创新中心,湖南 长沙 410128
周方,男,硕士研究生,主要从事茶叶加工及功能成分化学研究,630751304@qq.com。

收稿日期: 2019-04-29

  修回日期: 2019-07-20

  网络出版日期: 2019-12-24

基金资助

国家茶叶产业技术体系研究项目(CARS-19-C01)、国家重点研发计划课题(2017YFD0400803)、国家自然科学基金项目(31471706、31871764、31100502)

Advances in Research on the Regulation of Tea Polyphenols and Effects on Intestinal Flora

  • ZHOU Fang ,
  • OUYANG Jian ,
  • HUANG Jian'an ,
  • LIU Zhonghua
Expand
  • 1. Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China;
    2. National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China;
    3. Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha 410128, China

Received date: 2019-04-29

  Revised date: 2019-07-20

  Online published: 2019-12-24

摘要

代谢综合征是高血压、血糖异常、血脂紊乱和肥胖症等疾病在人体内集结的一组复杂的代谢紊乱症候群。茶多酚是茶叶中的特征次生代谢产物之一,最新研究表明,茶多酚可以通过对肠道菌群的干预,改善肠道菌群紊乱,调节宿主-肠道菌群的共代谢过程,进而达到改善代谢综合征的目的。本文系统总结了茶多酚的吸收与代谢,以及茶多酚在体外发酵模型、动物试验和临床试验中对肠道菌群的影响,阐述了茶多酚-微生物群-宿主三者之间的内在作用机制,有助于以肠道菌群理论为基础探讨茶多酚对人体健康的作用,并为茶多酚的功能性产品开发提供理论依据。

本文引用格式

周方 , 欧阳建 , 黄建安 , 刘仲华 . 茶多酚对肠道微生物的调节作用研究进展[J]. 茶叶科学, 2019 , 39(6) : 619 -630 . DOI: 10.13305/j.cnki.jts.2019.06.001

Abstract

Metabolic syndrome (MS) is an abnormal multi-metabolic disease that comprises a combination of various diseases such as hypertension, abnormal blood sugar, dyslipidemia and obesity. Tea polyphenols (TPs) are the characteristics secondary metabolites in tea leaves. The latest studies show that TPs can improve the disorder of gut flora (GF) and modulate the co-metabolism of Host-GF by the intervention & treatment to achieve the goal of improving MS. This paper systematically summarized the absorption and metabolism of TPs and the effects of TPs on GF in in vitro fermentation models, animal experiments, and clinical trials. The underlying mechanism among TPs-GF-Host was described, which would facilitate further exploring the effects of TPs on human health based on the theory of intestinal flora and developing functional products of TPs. In addition, it also provided theoretical foundation for developing functional products associating with TPs.

参考文献

[1] Lozupone C A, Stombaugh J I, Gordon J I, et al.Diversity, stability and resilience of the human gut microbiota[J]. Nature, 2012, 489(7415): 220-230.
[2] Chang C J, Lin C S, Lu C C, et al.Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota[J]. Nature Communications, 2015, 6(1): 7489. DOI: 10.1038/ncomms8489.
[3] Wu T R, Lin C S, Chang C J, et al.Gut commensal Parabacteroides goldsteinii plays a predominant role in the anti-obesity effects of polysaccharides isolated from Hirsutella sinensis[J]. Gut, 2019, 68(2): 248-262.
[4] Li J, Lin S, Vanhoutte P M, et al.Akkermansia Muciniphila Protects Against Atherosclerosis by Preventing Metabolic Endotoxemia-Induced Inflammation in Apoe-/- Mice[J]. Circulation, 2016, 133(24): 2434-2446.
[5] Imhann F, Vich V A, Bonder M J, et al.Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease[J]. Gut, 2018, 67(1): 108-119.
[6] Ley R E, Fredrik B C, Peter T, et al.Obesity alters gut microbial ecology[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005,102(31): 11070-11075.
[7] Turnbaugh P J, Ley R E, Manowald M A, et al.An obesity-associated gut microbiome with increased capacity for energy harvest[J]. Nature, 2006, 444(7122): 1027-1031.
[8] Graham C, Mullen A, Whelan K.Obesity and the gastrointestinal microbiota: a review of associations and mechanisms[J]. Nutrition Reviews, 2015, 73(6): 376-385.
[9] Wang L, Zeng B, Zhang X, et al.The effect of green tea polyphenols on gut microbial diversity and fat deposition in C57BL/6J HFA mice[J]. Food & Function, 2016, 7(12): 4956-4966.
[10] Axling U, Olsson C, Xu J, et al.Green tea powder and Lactobacillus plantarum affect gut microbiota, lipid metabolism and inflammation in high-fat fed C57BL/6J mice[J]. Nutrition & Metabolism, 2012, 9(1): 105. DOI: 10.1186/1743-7075-9-105.
[11] 宛晓春. 茶叶生物化学[M]. 3版. 北京: 中国农业出版社, 2003: 9-11.
[12] Sun H, Chen Y, Cheng M, et al.The modulatory effect of polyphenols from green tea, oolong tea and black tea on human intestinal microbiota in vitro[J]. Journal of Food Science and Technology, 2018, 55(1): 399-407.
[13] Guo X, Cheng M, Zhang X, et al.Green tea polyphenols reduce obesity in high-fat diet-induced mice by modulating intestinal microbiota composition[J]. International Journal of Food Science & Technology, 2017, 52(8): 1723-1730.
[14] Zhang X, Zhang M, Ho C-T, et al.Metagenomics analysis of gut microbiota modulatory effect of green tea polyphenols by high fat diet-induced obesity mice model[J]. Journal of Functional Foods, 2018, 46: 268-277.
[15] Jin J S, Touyama M, Hisada T, et al.Effects of green tea consumption on human fecal microbiota with special reference to Bifidobacterium species[J]. Microbiol Immunol, 2012, 56(11): 729-739.
[16] Janssens P L, Penders J, Hursel R, et al.Long-term green tea supplementation does not change the human gut microbiota[J]. PLoS One, 2016, 11(4): e0153134. DOI: 10.1371/journal.pone.0153134.
[17] Oritani Y, Setoguchi Y, Ito R, et al., Comparison of (-)-epigallocatechin-3-O-gallate (EGCG) and O-methyl EGCG bioavailability in rats[J]. Biological & Pharmaceutical Bulletin, 2013, 36(10): 1577-1582.
[18] Liu Z, Bruins M E, Ni L, et al.Green and black tea phenolics: bioavailability, transformation by colonic microbiota, and modulation of colonic microbiota[J]. Journal of Agricultural and Food Chemistry, 2018, 66(32): 8469-8477.
[19] Hsu C H, Tsai T H, Kao Y H, et al.Effect of green tea extract on obese women: A randomized, double-blind, placebo-controlled clinical trial[J]. Clinical Nutrition, 2008, 27(3): 363-370.
[20] Manach C.Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies[J]. The American Journal of Clinical Nutrition, 2005, 81(S1): 230S-242S.
[21] Yang C S, Chen L, Lee M J, et al.Blood and urine levels of tea catechins after ingestion of different amounts of green tea by human volunteers[J]. Cancer epidemiology, Biomarkers & Prevention, 1998, 7(4): 351-354.
[22] Rodney J, Murphy, Angus S, et al.Uptake and retention of catechins by Caco-2 human intestinal cells are modulated by tea formulation following simulated digestion[J]. The Faseb Journal, 2007, 21(5): A730.
[23] Gan R Y, Li H B, Sui Z Q, et al.Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): An updated review[J]. Critical reviews in food science and nutrition, 2018, 58(6): 924-941.
[24] Scalbert A, Morand C, Manach C, et al.Absorption and metabolism of polyphenols in the gut and impact on health[J]. Biomedicine & Pharmacotherapy, 2002, 56(6): 276-282.
[25] Williamson G, Clifford M N.Colonic metabolites of berry polyphenols: the missing link to biological activity?[J]. British Journal of Nutrition, 2010, 104(S3): 48-66.
[26] Monagas M, Urpi-sarda M, Sánchez-patán N F, et al. Insights into the metabolism and microbial biotransformation of dietary flavan-3-ols and the bioactivity of their metabolites[J]. Food & Function, 2010, 1(3): 233-253.
[27] Stalmach A, Mullen W, Steiline H, et al.Absorption, metabolism, and excretion of green tea flavan-3-ols in humans with an ileostomy[J]. Molecular Nutrition & Food Research, 2010, 54(3): 323-334.
[28] Feng Y, Wan. Metabolism of Green Tea Catechins: An Overview[J]. Current Drug Metabolism, 2006, 7(7): 755-809.
[29] Remely M, FerkF, Sterneder S, et al. EGCG prevents high fat diet-induced changes in gut microbiota, decreases of dna strand breaks, and changes in expression and DNA methylation of Dnmt1 and MLH1 in C57BL/6J male mice[J]. Oxidative Medicine and Cellular Longevity, 2017, 2017: 3079148. DOI: 10.1155/2017/3079148.
[30] Williamson G, Clifford M N.Role of the small intestine, colon and microbiota in determining the metabolic fate of polyphenols[J]. Biochemical Pharmacology, 2017, 139: 24-39.
[31] Kemperman R A, Bolca S, Roger L C.Novel approaches for analysing gut microbes and dietary polyphenols: challenges and opportunities[J]. Microbiology, 2010, 156(11): 3224-3231.
[32] Tuohy K M, Conterno L, Gasperotti M, et al.Up-regulating the human intestinal microbiome using whole plant foods, polyphenols, and/or fiber[J]. Journal of Agricultural and Food Chemistry, 2012, 60(36): 8776-8782.
[33] Okubo T, Ishihara N, Oura A, et al.In vivo effects of tea polyphenol intake on human intestinal microflora and metabolism[J]. Bioscience Biotechnology & Biochemistry, 1992, 56(4): 588-591.
[34] Lee H C, Jenner A M, Low C S, et al.Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota[J]. Research in Microbiology, 2006, 157(9): 876-884.
[35] Parkar S G, Stevenson D E, Skinner M A.The potential influence of fruit polyphenols on colonic microflora and human gut health[J]. International Journal of Food Microbiology, 2008, 124(3): 295-298.
[36] Yeoh B S, Aguilera O R, Singh V, et al.Epigallocatechin-3-gallate inhibition of myeloperoxidase and its counter-regulation by dietary iron and lipocalin 2 in murine model of gut inflammation[J]. The American Journal of Pathology, 2016, 186(4): 912-926.
[37] Zhang X, Chen Y, Zhu J, et al.Metagenomics analysis of gut microbiota in a high fat diet-induced obesity mouse model fed with (-)-epigallocatechin 3-O-(3-O-methyl) gallate (EGCG3″Me)[J].Molecular Nutrition & Food Research, 2018, 62(13): 268-277.
[38] Cheng M, Zhang X, Miao Y, et al.The modulatory effect of (-)-epigallocatechin 3-O-(3-O-methyl) gallate (EGCG3''Me) on intestinal microbiota of high fat diet-induced obesity mice model[J]. Food Research International, 2017, 92: 9-16.
[39] Tzounis X, Vulevic J, Kuhnle G G, et al.Flavanol monomer-induced changes to the human faecal microflora[J]. British Journal of Nutrition, 2008, 99(4): 782-792.
[40] Kemperman R A, Gross G, Mondot S, et al.Impact of polyphenols from black tea and red wine/grape juice on a gut model microbiome[J]. Food Research International, 2013, 53(2): 659-669.
[41] Singh D P, Singh J, Boparai R K, et al.Isomalto-oligosaccharides, a prebiotic, functionally augment green tea effects against high fat diet-induced metabolic alterations via preventing gut dysbacteriosis in mice[J]. Pharmacological Research, 2017, 123: 103-113.
[42] Foster M T, Gentile C L, Cox-york K, et al. Fuzhuan tea consumption imparts hepatoprotective effects and alters intestinal microbiota in high saturated fat diet-fed rats[J]. Molecular Nutrition & Food Research, 2016, 60(5): 1213-1220.
[43] Chen G, Xie M, Dai Z, et al.Kudingcha and Fuzhuan brick tea prevent obesity and modulate gut microbiota in high-fat diet fed mice[J]. Molecular Nutrition & Food Research, 2018, 62(6): 1700485. DOI: 10.1002/mnfr.201700485.
[44] Gao X, Xie Q, Kong P, et al.Polyphenol- and caffeine-rich postfermented Pu-erh tea improves diet-induced metabolic syndrome by remodeling intestinal homeostasis in mice[J]. Infection And Immunity, 2018, 86(1): e00601. DOI: 10.1128/IAI.00601-17.
[45] Sheng L, Jean P K, Liu H X, et al.Obesity treatment by epigallocatechin-3-gallate-regulated bile acid signaling and its enriched Akkermansia muciniphila[J]. The Faseb Journal, 2018, 32(12): 6371-6384.
[46] Most J, Penders J, Lucchesi M, et al.Gut microbiota composition in relation to the metabolic response to 12-week combined polyphenol supplementation in overweight men and women[J]. European Journal of Clinical Nutrition, 2017, 71(9): 1040-1045.
[47] Zhang X, Zhu X, Sun Y, et al.Fermentation in vitro of EGCG, GCG and EGCG3"Me isolated from Oolong tea by human intestinal microbiota[J]. Food Research International, 2013, 54(2): 1589-1595.
[48] Jean-pierre F, Ling-chun K, Julien T, et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers[J]. Diabetes, 2010, 59(12): 3049-3057.
[49] Graessler J, Qin Y, Zhong H, et al.Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes: correlation with inflammatory and metabolic parameters[J]. The Pharmacogenomics Journal, 2013, 13(6): 514-522.
[50] Munukka E, Rintala A, Toivonen R, et al.Faecalibacterium prausnitzii treatment improves hepatic health and reduces adipose tissue inflammation in high-fat fed mice[J]. The ISME Journal, 2017, 11(7): 1667-1679.
[51] Hippe B, Remely M, Aumueller E, et al.Faecalibacterium prausnitzii phylotypes in type two diabetic, obese, and lean control subjects[J]. Beneficial Microbes, 2016, 7(4): 511-517.
[52] Everard A, Belzer C, Geurts L, et al.Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(22): 9066-9071.
[53] Furet J P, Kong L C, Tap J, et al.Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers[J]. Diabetes, 2010, 59(12): 3049-3057.
[54] Reunanen J, Kainulainen V, Huuskonen L, et al.Akkermansia muciniphila adheres to enterocytes and strengthens the integrity of the epithelial cell layer[J]. Applied and Environmental Microbiology, 2015, 81(11): 3655-3662.
[55] Vodnar D C, Socaciu C.Green tea increases the survival yield of Bifidobacteria in simulated gastrointestinal environment and during refrigerated conditions[J]. Chemistry Central Journal, 2012, 6: 61. DOI: 10.1186/1752-153X-6-61.
[56] Westerterp-plantenga M S, Lejeune M P G M, Kovacs E M R. Body weight loss and weight maintenance in relation to habitual caffeine intake and green tea supplementation[J]. Obesity research, 2005, 13(7): 1195-1204.
文章导航

/