[1] Lozupone C A, Stombaugh J I, Gordon J I, et al.Diversity, stability and resilience of the human gut microbiota[J]. Nature, 2012, 489(7415): 220-230.
[2] Chang C J, Lin C S, Lu C C, et al.Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota[J]. Nature Communications, 2015, 6(1): 7489. DOI: 10.1038/ncomms8489.
[3] Wu T R, Lin C S, Chang C J, et al.Gut commensal Parabacteroides goldsteinii plays a predominant role in the anti-obesity effects of polysaccharides isolated from Hirsutella sinensis[J]. Gut, 2019, 68(2): 248-262.
[4] Li J, Lin S, Vanhoutte P M, et al.Akkermansia Muciniphila Protects Against Atherosclerosis by Preventing Metabolic Endotoxemia-Induced Inflammation in Apoe-/- Mice[J]. Circulation, 2016, 133(24): 2434-2446.
[5] Imhann F, Vich V A, Bonder M J, et al.Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease[J]. Gut, 2018, 67(1): 108-119.
[6] Ley R E, Fredrik B C, Peter T, et al.Obesity alters gut microbial ecology[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005,102(31): 11070-11075.
[7] Turnbaugh P J, Ley R E, Manowald M A, et al.An obesity-associated gut microbiome with increased capacity for energy harvest[J]. Nature, 2006, 444(7122): 1027-1031.
[8] Graham C, Mullen A, Whelan K.Obesity and the gastrointestinal microbiota: a review of associations and mechanisms[J]. Nutrition Reviews, 2015, 73(6): 376-385.
[9] Wang L, Zeng B, Zhang X, et al.The effect of green tea polyphenols on gut microbial diversity and fat deposition in C57BL/6J HFA mice[J]. Food & Function, 2016, 7(12): 4956-4966.
[10] Axling U, Olsson C, Xu J, et al.Green tea powder and Lactobacillus plantarum affect gut microbiota, lipid metabolism and inflammation in high-fat fed C57BL/6J mice[J]. Nutrition & Metabolism, 2012, 9(1): 105. DOI: 10.1186/1743-7075-9-105.
[11] 宛晓春. 茶叶生物化学[M]. 3版. 北京: 中国农业出版社, 2003: 9-11.
[12] Sun H, Chen Y, Cheng M, et al.The modulatory effect of polyphenols from green tea, oolong tea and black tea on human intestinal microbiota in vitro[J]. Journal of Food Science and Technology, 2018, 55(1): 399-407.
[13] Guo X, Cheng M, Zhang X, et al.Green tea polyphenols reduce obesity in high-fat diet-induced mice by modulating intestinal microbiota composition[J]. International Journal of Food Science & Technology, 2017, 52(8): 1723-1730.
[14] Zhang X, Zhang M, Ho C-T, et al.Metagenomics analysis of gut microbiota modulatory effect of green tea polyphenols by high fat diet-induced obesity mice model[J]. Journal of Functional Foods, 2018, 46: 268-277.
[15] Jin J S, Touyama M, Hisada T, et al.Effects of green tea consumption on human fecal microbiota with special reference to Bifidobacterium species[J]. Microbiol Immunol, 2012, 56(11): 729-739.
[16] Janssens P L, Penders J, Hursel R, et al.Long-term green tea supplementation does not change the human gut microbiota[J]. PLoS One, 2016, 11(4): e0153134. DOI: 10.1371/journal.pone.0153134.
[17] Oritani Y, Setoguchi Y, Ito R, et al., Comparison of (-)-epigallocatechin-3-O-gallate (EGCG) and O-methyl EGCG bioavailability in rats[J]. Biological & Pharmaceutical Bulletin, 2013, 36(10): 1577-1582.
[18] Liu Z, Bruins M E, Ni L, et al.Green and black tea phenolics: bioavailability, transformation by colonic microbiota, and modulation of colonic microbiota[J]. Journal of Agricultural and Food Chemistry, 2018, 66(32): 8469-8477.
[19] Hsu C H, Tsai T H, Kao Y H, et al.Effect of green tea extract on obese women: A randomized, double-blind, placebo-controlled clinical trial[J]. Clinical Nutrition, 2008, 27(3): 363-370.
[20] Manach C.Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies[J]. The American Journal of Clinical Nutrition, 2005, 81(S1): 230S-242S.
[21] Yang C S, Chen L, Lee M J, et al.Blood and urine levels of tea catechins after ingestion of different amounts of green tea by human volunteers[J]. Cancer epidemiology, Biomarkers & Prevention, 1998, 7(4): 351-354.
[22] Rodney J, Murphy, Angus S, et al.Uptake and retention of catechins by Caco-2 human intestinal cells are modulated by tea formulation following simulated digestion[J]. The Faseb Journal, 2007, 21(5): A730.
[23] Gan R Y, Li H B, Sui Z Q, et al.Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): An updated review[J]. Critical reviews in food science and nutrition, 2018, 58(6): 924-941.
[24] Scalbert A, Morand C, Manach C, et al.Absorption and metabolism of polyphenols in the gut and impact on health[J]. Biomedicine & Pharmacotherapy, 2002, 56(6): 276-282.
[25] Williamson G, Clifford M N.Colonic metabolites of berry polyphenols: the missing link to biological activity?[J]. British Journal of Nutrition, 2010, 104(S3): 48-66.
[26] Monagas M, Urpi-sarda M, Sánchez-patán N F, et al. Insights into the metabolism and microbial biotransformation of dietary flavan-3-ols and the bioactivity of their metabolites[J]. Food & Function, 2010, 1(3): 233-253.
[27] Stalmach A, Mullen W, Steiline H, et al.Absorption, metabolism, and excretion of green tea flavan-3-ols in humans with an ileostomy[J]. Molecular Nutrition & Food Research, 2010, 54(3): 323-334.
[28] Feng Y, Wan. Metabolism of Green Tea Catechins: An Overview[J]. Current Drug Metabolism, 2006, 7(7): 755-809.
[29] Remely M, FerkF, Sterneder S, et al. EGCG prevents high fat diet-induced changes in gut microbiota, decreases of dna strand breaks, and changes in expression and DNA methylation of Dnmt1 and MLH1 in C57BL/6J male mice[J]. Oxidative Medicine and Cellular Longevity, 2017, 2017: 3079148. DOI: 10.1155/2017/3079148.
[30] Williamson G, Clifford M N.Role of the small intestine, colon and microbiota in determining the metabolic fate of polyphenols[J]. Biochemical Pharmacology, 2017, 139: 24-39.
[31] Kemperman R A, Bolca S, Roger L C.Novel approaches for analysing gut microbes and dietary polyphenols: challenges and opportunities[J]. Microbiology, 2010, 156(11): 3224-3231.
[32] Tuohy K M, Conterno L, Gasperotti M, et al.Up-regulating the human intestinal microbiome using whole plant foods, polyphenols, and/or fiber[J]. Journal of Agricultural and Food Chemistry, 2012, 60(36): 8776-8782.
[33] Okubo T, Ishihara N, Oura A, et al.In vivo effects of tea polyphenol intake on human intestinal microflora and metabolism[J]. Bioscience Biotechnology & Biochemistry, 1992, 56(4): 588-591.
[34] Lee H C, Jenner A M, Low C S, et al.Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota[J]. Research in Microbiology, 2006, 157(9): 876-884.
[35] Parkar S G, Stevenson D E, Skinner M A.The potential influence of fruit polyphenols on colonic microflora and human gut health[J]. International Journal of Food Microbiology, 2008, 124(3): 295-298.
[36] Yeoh B S, Aguilera O R, Singh V, et al.Epigallocatechin-3-gallate inhibition of myeloperoxidase and its counter-regulation by dietary iron and lipocalin 2 in murine model of gut inflammation[J]. The American Journal of Pathology, 2016, 186(4): 912-926.
[37] Zhang X, Chen Y, Zhu J, et al.Metagenomics analysis of gut microbiota in a high fat diet-induced obesity mouse model fed with (-)-epigallocatechin 3-O-(3-O-methyl) gallate (EGCG3″Me)[J].Molecular Nutrition & Food Research, 2018, 62(13): 268-277.
[38] Cheng M, Zhang X, Miao Y, et al.The modulatory effect of (-)-epigallocatechin 3-O-(3-O-methyl) gallate (EGCG3''Me) on intestinal microbiota of high fat diet-induced obesity mice model[J]. Food Research International, 2017, 92: 9-16.
[39] Tzounis X, Vulevic J, Kuhnle G G, et al.Flavanol monomer-induced changes to the human faecal microflora[J]. British Journal of Nutrition, 2008, 99(4): 782-792.
[40] Kemperman R A, Gross G, Mondot S, et al.Impact of polyphenols from black tea and red wine/grape juice on a gut model microbiome[J]. Food Research International, 2013, 53(2): 659-669.
[41] Singh D P, Singh J, Boparai R K, et al.Isomalto-oligosaccharides, a prebiotic, functionally augment green tea effects against high fat diet-induced metabolic alterations via preventing gut dysbacteriosis in mice[J]. Pharmacological Research, 2017, 123: 103-113.
[42] Foster M T, Gentile C L, Cox-york K, et al. Fuzhuan tea consumption imparts hepatoprotective effects and alters intestinal microbiota in high saturated fat diet-fed rats[J]. Molecular Nutrition & Food Research, 2016, 60(5): 1213-1220.
[43] Chen G, Xie M, Dai Z, et al.Kudingcha and Fuzhuan brick tea prevent obesity and modulate gut microbiota in high-fat diet fed mice[J]. Molecular Nutrition & Food Research, 2018, 62(6): 1700485. DOI: 10.1002/mnfr.201700485.
[44] Gao X, Xie Q, Kong P, et al.Polyphenol- and caffeine-rich postfermented Pu-erh tea improves diet-induced metabolic syndrome by remodeling intestinal homeostasis in mice[J]. Infection And Immunity, 2018, 86(1): e00601. DOI: 10.1128/IAI.00601-17.
[45] Sheng L, Jean P K, Liu H X, et al.Obesity treatment by epigallocatechin-3-gallate-regulated bile acid signaling and its enriched Akkermansia muciniphila[J]. The Faseb Journal, 2018, 32(12): 6371-6384.
[46] Most J, Penders J, Lucchesi M, et al.Gut microbiota composition in relation to the metabolic response to 12-week combined polyphenol supplementation in overweight men and women[J]. European Journal of Clinical Nutrition, 2017, 71(9): 1040-1045.
[47] Zhang X, Zhu X, Sun Y, et al.Fermentation in vitro of EGCG, GCG and EGCG3"Me isolated from Oolong tea by human intestinal microbiota[J]. Food Research International, 2013, 54(2): 1589-1595.
[48] Jean-pierre F, Ling-chun K, Julien T, et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers[J]. Diabetes, 2010, 59(12): 3049-3057.
[49] Graessler J, Qin Y, Zhong H, et al.Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes: correlation with inflammatory and metabolic parameters[J]. The Pharmacogenomics Journal, 2013, 13(6): 514-522.
[50] Munukka E, Rintala A, Toivonen R, et al.Faecalibacterium prausnitzii treatment improves hepatic health and reduces adipose tissue inflammation in high-fat fed mice[J]. The ISME Journal, 2017, 11(7): 1667-1679.
[51] Hippe B, Remely M, Aumueller E, et al.Faecalibacterium prausnitzii phylotypes in type two diabetic, obese, and lean control subjects[J]. Beneficial Microbes, 2016, 7(4): 511-517.
[52] Everard A, Belzer C, Geurts L, et al.Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(22): 9066-9071.
[53] Furet J P, Kong L C, Tap J, et al.Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers[J]. Diabetes, 2010, 59(12): 3049-3057.
[54] Reunanen J, Kainulainen V, Huuskonen L, et al.Akkermansia muciniphila adheres to enterocytes and strengthens the integrity of the epithelial cell layer[J]. Applied and Environmental Microbiology, 2015, 81(11): 3655-3662.
[55] Vodnar D C, Socaciu C.Green tea increases the survival yield of Bifidobacteria in simulated gastrointestinal environment and during refrigerated conditions[J]. Chemistry Central Journal, 2012, 6: 61. DOI: 10.1186/1752-153X-6-61.
[56] Westerterp-plantenga M S, Lejeune M P G M, Kovacs E M R. Body weight loss and weight maintenance in relation to habitual caffeine intake and green tea supplementation[J]. Obesity research, 2005, 13(7): 1195-1204.