茶叶科学 ›› 2019, Vol. 39 ›› Issue (6): 619-630.doi: 10.13305/j.cnki.jts.2019.06.001
• • 下一篇
周方1,2, 欧阳建1,2, 黄建安1,2,3, 刘仲华1,2,3,*
收稿日期:
2019-04-29
修回日期:
2019-07-20
出版日期:
2019-12-15
发布日期:
2019-12-24
通讯作者:
* larkin_liu@163.com
作者简介:
周方,男,硕士研究生,主要从事茶叶加工及功能成分化学研究,630751304@qq.com。
基金资助:
ZHOU Fang1,2, OUYANG Jian1,2, HUANG Jian'an1,2,3, LIU Zhonghua1,2,3,*
Received:
2019-04-29
Revised:
2019-07-20
Online:
2019-12-15
Published:
2019-12-24
摘要: 代谢综合征是高血压、血糖异常、血脂紊乱和肥胖症等疾病在人体内集结的一组复杂的代谢紊乱症候群。茶多酚是茶叶中的特征次生代谢产物之一,最新研究表明,茶多酚可以通过对肠道菌群的干预,改善肠道菌群紊乱,调节宿主-肠道菌群的共代谢过程,进而达到改善代谢综合征的目的。本文系统总结了茶多酚的吸收与代谢,以及茶多酚在体外发酵模型、动物试验和临床试验中对肠道菌群的影响,阐述了茶多酚-微生物群-宿主三者之间的内在作用机制,有助于以肠道菌群理论为基础探讨茶多酚对人体健康的作用,并为茶多酚的功能性产品开发提供理论依据。
中图分类号:
周方, 欧阳建, 黄建安, 刘仲华. 茶多酚对肠道微生物的调节作用研究进展[J]. 茶叶科学, 2019, 39(6): 619-630. doi: 10.13305/j.cnki.jts.2019.06.001.
ZHOU Fang, OUYANG Jian, HUANG Jian'an, LIU Zhonghua. Advances in Research on the Regulation of Tea Polyphenols and Effects on Intestinal Flora[J]. Journal of Tea Science, 2019, 39(6): 619-630. doi: 10.13305/j.cnki.jts.2019.06.001.
[1] | Lozupone C A, Stombaugh J I, Gordon J I, et al.Diversity, stability and resilience of the human gut microbiota[J]. Nature, 2012, 489(7415): 220-230. |
[2] | Chang C J, Lin C S, Lu C C, et al.Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota[J]. Nature Communications, 2015, 6(1): 7489. DOI: 10.1038/ncomms8489. |
[3] | Wu T R, Lin C S, Chang C J, et al.Gut commensal Parabacteroides goldsteinii plays a predominant role in the anti-obesity effects of polysaccharides isolated from Hirsutella sinensis[J]. Gut, 2019, 68(2): 248-262. |
[4] | Li J, Lin S, Vanhoutte P M, et al.Akkermansia Muciniphila Protects Against Atherosclerosis by Preventing Metabolic Endotoxemia-Induced Inflammation in Apoe-/- Mice[J]. Circulation, 2016, 133(24): 2434-2446. |
[5] | Imhann F, Vich V A, Bonder M J, et al.Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease[J]. Gut, 2018, 67(1): 108-119. |
[6] | Ley R E, Fredrik B C, Peter T, et al.Obesity alters gut microbial ecology[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005,102(31): 11070-11075. |
[7] | Turnbaugh P J, Ley R E, Manowald M A, et al.An obesity-associated gut microbiome with increased capacity for energy harvest[J]. Nature, 2006, 444(7122): 1027-1031. |
[8] | Graham C, Mullen A, Whelan K.Obesity and the gastrointestinal microbiota: a review of associations and mechanisms[J]. Nutrition Reviews, 2015, 73(6): 376-385. |
[9] | Wang L, Zeng B, Zhang X, et al.The effect of green tea polyphenols on gut microbial diversity and fat deposition in C57BL/6J HFA mice[J]. Food & Function, 2016, 7(12): 4956-4966. |
[10] | Axling U, Olsson C, Xu J, et al.Green tea powder and Lactobacillus plantarum affect gut microbiota, lipid metabolism and inflammation in high-fat fed C57BL/6J mice[J]. Nutrition & Metabolism, 2012, 9(1): 105. DOI: 10.1186/1743-7075-9-105. |
[11] | 宛晓春. 茶叶生物化学[M]. 3版. 北京: 中国农业出版社, 2003: 9-11. |
[12] | Sun H, Chen Y, Cheng M, et al.The modulatory effect of polyphenols from green tea, oolong tea and black tea on human intestinal microbiota in vitro[J]. Journal of Food Science and Technology, 2018, 55(1): 399-407. |
[13] | Guo X, Cheng M, Zhang X, et al.Green tea polyphenols reduce obesity in high-fat diet-induced mice by modulating intestinal microbiota composition[J]. International Journal of Food Science & Technology, 2017, 52(8): 1723-1730. |
[14] | Zhang X, Zhang M, Ho C-T, et al.Metagenomics analysis of gut microbiota modulatory effect of green tea polyphenols by high fat diet-induced obesity mice model[J]. Journal of Functional Foods, 2018, 46: 268-277. |
[15] | Jin J S, Touyama M, Hisada T, et al.Effects of green tea consumption on human fecal microbiota with special reference to Bifidobacterium species[J]. Microbiol Immunol, 2012, 56(11): 729-739. |
[16] | Janssens P L, Penders J, Hursel R, et al.Long-term green tea supplementation does not change the human gut microbiota[J]. PLoS One, 2016, 11(4): e0153134. DOI: 10.1371/journal.pone.0153134. |
[17] | Oritani Y, Setoguchi Y, Ito R, et al., Comparison of (-)-epigallocatechin-3-O-gallate (EGCG) and O-methyl EGCG bioavailability in rats[J]. Biological & Pharmaceutical Bulletin, 2013, 36(10): 1577-1582. |
[18] | Liu Z, Bruins M E, Ni L, et al.Green and black tea phenolics: bioavailability, transformation by colonic microbiota, and modulation of colonic microbiota[J]. Journal of Agricultural and Food Chemistry, 2018, 66(32): 8469-8477. |
[19] | Hsu C H, Tsai T H, Kao Y H, et al.Effect of green tea extract on obese women: A randomized, double-blind, placebo-controlled clinical trial[J]. Clinical Nutrition, 2008, 27(3): 363-370. |
[20] | Manach C.Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies[J]. The American Journal of Clinical Nutrition, 2005, 81(S1): 230S-242S. |
[21] | Yang C S, Chen L, Lee M J, et al.Blood and urine levels of tea catechins after ingestion of different amounts of green tea by human volunteers[J]. Cancer epidemiology, Biomarkers & Prevention, 1998, 7(4): 351-354. |
[22] | Rodney J, Murphy, Angus S, et al.Uptake and retention of catechins by Caco-2 human intestinal cells are modulated by tea formulation following simulated digestion[J]. The Faseb Journal, 2007, 21(5): A730. |
[23] | Gan R Y, Li H B, Sui Z Q, et al.Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): An updated review[J]. Critical reviews in food science and nutrition, 2018, 58(6): 924-941. |
[24] | Scalbert A, Morand C, Manach C, et al.Absorption and metabolism of polyphenols in the gut and impact on health[J]. Biomedicine & Pharmacotherapy, 2002, 56(6): 276-282. |
[25] | Williamson G, Clifford M N.Colonic metabolites of berry polyphenols: the missing link to biological activity?[J]. British Journal of Nutrition, 2010, 104(S3): 48-66. |
[26] | Monagas M, Urpi-sarda M, Sánchez-patán N F, et al. Insights into the metabolism and microbial biotransformation of dietary flavan-3-ols and the bioactivity of their metabolites[J]. Food & Function, 2010, 1(3): 233-253. |
[27] | Stalmach A, Mullen W, Steiline H, et al.Absorption, metabolism, and excretion of green tea flavan-3-ols in humans with an ileostomy[J]. Molecular Nutrition & Food Research, 2010, 54(3): 323-334. |
[28] | Feng Y, Wan. Metabolism of Green Tea Catechins: An Overview[J]. Current Drug Metabolism, 2006, 7(7): 755-809. |
[29] | Remely M, FerkF, Sterneder S, et al. EGCG prevents high fat diet-induced changes in gut microbiota, decreases of dna strand breaks, and changes in expression and DNA methylation of Dnmt1 and MLH1 in C57BL/6J male mice[J]. Oxidative Medicine and Cellular Longevity, 2017, 2017: 3079148. DOI: 10.1155/2017/3079148. |
[30] | Williamson G, Clifford M N.Role of the small intestine, colon and microbiota in determining the metabolic fate of polyphenols[J]. Biochemical Pharmacology, 2017, 139: 24-39. |
[31] | Kemperman R A, Bolca S, Roger L C.Novel approaches for analysing gut microbes and dietary polyphenols: challenges and opportunities[J]. Microbiology, 2010, 156(11): 3224-3231. |
[32] | Tuohy K M, Conterno L, Gasperotti M, et al.Up-regulating the human intestinal microbiome using whole plant foods, polyphenols, and/or fiber[J]. Journal of Agricultural and Food Chemistry, 2012, 60(36): 8776-8782. |
[33] | Okubo T, Ishihara N, Oura A, et al.In vivo effects of tea polyphenol intake on human intestinal microflora and metabolism[J]. Bioscience Biotechnology & Biochemistry, 1992, 56(4): 588-591. |
[34] | Lee H C, Jenner A M, Low C S, et al.Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota[J]. Research in Microbiology, 2006, 157(9): 876-884. |
[35] | Parkar S G, Stevenson D E, Skinner M A.The potential influence of fruit polyphenols on colonic microflora and human gut health[J]. International Journal of Food Microbiology, 2008, 124(3): 295-298. |
[36] | Yeoh B S, Aguilera O R, Singh V, et al.Epigallocatechin-3-gallate inhibition of myeloperoxidase and its counter-regulation by dietary iron and lipocalin 2 in murine model of gut inflammation[J]. The American Journal of Pathology, 2016, 186(4): 912-926. |
[37] | Zhang X, Chen Y, Zhu J, et al.Metagenomics analysis of gut microbiota in a high fat diet-induced obesity mouse model fed with (-)-epigallocatechin 3-O-(3-O-methyl) gallate (EGCG3″Me)[J].Molecular Nutrition & Food Research, 2018, 62(13): 268-277. |
[38] | Cheng M, Zhang X, Miao Y, et al.The modulatory effect of (-)-epigallocatechin 3-O-(3-O-methyl) gallate (EGCG3''Me) on intestinal microbiota of high fat diet-induced obesity mice model[J]. Food Research International, 2017, 92: 9-16. |
[39] | Tzounis X, Vulevic J, Kuhnle G G, et al.Flavanol monomer-induced changes to the human faecal microflora[J]. British Journal of Nutrition, 2008, 99(4): 782-792. |
[40] | Kemperman R A, Gross G, Mondot S, et al.Impact of polyphenols from black tea and red wine/grape juice on a gut model microbiome[J]. Food Research International, 2013, 53(2): 659-669. |
[41] | Singh D P, Singh J, Boparai R K, et al.Isomalto-oligosaccharides, a prebiotic, functionally augment green tea effects against high fat diet-induced metabolic alterations via preventing gut dysbacteriosis in mice[J]. Pharmacological Research, 2017, 123: 103-113. |
[42] | Foster M T, Gentile C L, Cox-york K, et al. Fuzhuan tea consumption imparts hepatoprotective effects and alters intestinal microbiota in high saturated fat diet-fed rats[J]. Molecular Nutrition & Food Research, 2016, 60(5): 1213-1220. |
[43] | Chen G, Xie M, Dai Z, et al.Kudingcha and Fuzhuan brick tea prevent obesity and modulate gut microbiota in high-fat diet fed mice[J]. Molecular Nutrition & Food Research, 2018, 62(6): 1700485. DOI: 10.1002/mnfr.201700485. |
[44] | Gao X, Xie Q, Kong P, et al.Polyphenol- and caffeine-rich postfermented Pu-erh tea improves diet-induced metabolic syndrome by remodeling intestinal homeostasis in mice[J]. Infection And Immunity, 2018, 86(1): e00601. DOI: 10.1128/IAI.00601-17. |
[45] | Sheng L, Jean P K, Liu H X, et al.Obesity treatment by epigallocatechin-3-gallate-regulated bile acid signaling and its enriched Akkermansia muciniphila[J]. The Faseb Journal, 2018, 32(12): 6371-6384. |
[46] | Most J, Penders J, Lucchesi M, et al.Gut microbiota composition in relation to the metabolic response to 12-week combined polyphenol supplementation in overweight men and women[J]. European Journal of Clinical Nutrition, 2017, 71(9): 1040-1045. |
[47] | Zhang X, Zhu X, Sun Y, et al.Fermentation in vitro of EGCG, GCG and EGCG3"Me isolated from Oolong tea by human intestinal microbiota[J]. Food Research International, 2013, 54(2): 1589-1595. |
[48] | Jean-pierre F, Ling-chun K, Julien T, et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers[J]. Diabetes, 2010, 59(12): 3049-3057. |
[49] | Graessler J, Qin Y, Zhong H, et al.Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes: correlation with inflammatory and metabolic parameters[J]. The Pharmacogenomics Journal, 2013, 13(6): 514-522. |
[50] | Munukka E, Rintala A, Toivonen R, et al.Faecalibacterium prausnitzii treatment improves hepatic health and reduces adipose tissue inflammation in high-fat fed mice[J]. The ISME Journal, 2017, 11(7): 1667-1679. |
[51] | Hippe B, Remely M, Aumueller E, et al.Faecalibacterium prausnitzii phylotypes in type two diabetic, obese, and lean control subjects[J]. Beneficial Microbes, 2016, 7(4): 511-517. |
[52] | Everard A, Belzer C, Geurts L, et al.Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(22): 9066-9071. |
[53] | Furet J P, Kong L C, Tap J, et al.Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers[J]. Diabetes, 2010, 59(12): 3049-3057. |
[54] | Reunanen J, Kainulainen V, Huuskonen L, et al.Akkermansia muciniphila adheres to enterocytes and strengthens the integrity of the epithelial cell layer[J]. Applied and Environmental Microbiology, 2015, 81(11): 3655-3662. |
[55] | Vodnar D C, Socaciu C.Green tea increases the survival yield of Bifidobacteria in simulated gastrointestinal environment and during refrigerated conditions[J]. Chemistry Central Journal, 2012, 6: 61. DOI: 10.1186/1752-153X-6-61. |
[56] | Westerterp-plantenga M S, Lejeune M P G M, Kovacs E M R. Body weight loss and weight maintenance in relation to habitual caffeine intake and green tea supplementation[J]. Obesity research, 2005, 13(7): 1195-1204. |
[1] | 李晶, 林彩容, 黄艳, 邓旭铭, 王艺清, 孙威江. 茶多酚对农杆菌介导的植物遗传转化体系的影响[J]. 茶叶科学, 2022, 42(4): 477-490. |
[2] | 孙颖, 陈鑫, 杨华, 应剑, 邵丹青, 吕晓华, 肖杰, 陈志雄, 李颂, 覃俊杰, 郑斌, 高建设. 饮用金花香橼茶3个月对小样本高脂血症人群糖脂代谢的改善效果研究[J]. 茶叶科学, 2022, 42(4): 561-576. |
[3] | 代昕玥, 葛炳钢, 张旭雯, 刘文武, 段继春, 傅冬和. 茯砖茶改善2型糖尿病小鼠代谢紊乱的效果研究[J]. 茶叶科学, 2022, 42(1): 63-75. |
[4] | 周少锋, 乾云菲, 赵真, 陈暄, 黎星辉. 不同发酵程度茶叶对茶垢形成的影响[J]. 茶叶科学, 2022, 42(1): 76-86. |
[5] | 吴鑫, 宋飞虎, 裴永胜, 朱冠宇, 姜乐兵, 宁文楷, 李臻峰, 刘本英. 基于机器视觉的茶叶微波杀青中品质变化与预测研究[J]. 茶叶科学, 2021, 41(6): 854-864. |
[6] | 周婷婷, 陈桂婷, 曹楠, 何建刚, 何功威, 肖长义, 李世刚. 从肠道菌群改变探讨青砖茶对非酒精性脂肪肝的预防作用[J]. 茶叶科学, 2021, 41(5): 669-680. |
[7] | 王盛琳, 杨崇山, 刘中原, 柳善建, 董春旺. 基于电特性的红茶发酵中茶多酚含量快速检测方法[J]. 茶叶科学, 2021, 41(2): 251-260. |
[8] | 卢莉, 程曦, 张渤, 沈小霞, 刘艳, 熊丽, 袁潇, 李远华, 黎星辉. 小种红茶茶多酚和咖啡碱近红外定量分析模型的建立[J]. 茶叶科学, 2020, 40(5): 689-695. |
[9] | 姚敏, 李大祥, 谢忠稳. 茶叶主要特征性化合物抗心血管炎症研究进展[J]. 茶叶科学, 2020, 40(1): 1-14. |
[10] | 张姝萍,王岳飞,徐平. 茶多酚对动脉粥样硬化的预防作用与机理研究进展[J]. 茶叶科学, 2019, 39(3): 231-246. |
[11] | 祝琳, 吴龙, 陈小强, 陈学玲, 吴正奇, 石勇. 茶多酚与多糖的相互作用:作用机理及功能特性变化研究进展[J]. 茶叶科学, 2019, 39(2): 203-210. |
[12] | 吴根梁, 侯爱香, 李珂, 李宗军. 陈年茯砖茶多酚类对老年人肠道菌群的影响研究[J]. 茶叶科学, 2018, 38(3): 319-330. |
[13] | 史春麟, 李晓焕, 黄翔翔. 绿茶多酚对被动吸烟引起小鼠肺氧化应激的干预研究[J]. 茶叶科学, 2018, 38(2): 212-220. |
[14] | 宋娟, 王栋, 于绪东. 茶多酚乳胶剂的研制及稳定性考察[J]. 茶叶科学, 2017, 37(6): 623-630. |
[15] | 雷丽萍, 朱跃骅, 张剑, 杨文鸽, 李普友, 刘艳杰, 钱云霞. 茶多酚对冰藏大黄鱼品质及微生物的影响[J]. 茶叶科学, 2017, 37(5): 523-531. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|