欢迎访问《茶叶科学》,今天是

基于高通量测序筛选‘紫娟’花青素合成相关的miRNA

  • 陈林波 ,
  • 夏丽飞 ,
  • 刘悦 ,
  • 孙云南 ,
  • 蒋会兵 ,
  • 田易萍 ,
  • 陈亮
展开
  • 1. 云南省农业科学院茶叶研究所/云南省茶树种质资源创新与配套栽培技术工程研究中心/云南省茶学重点实验室,云南 勐海 666201;
    2. 中国农业科学院茶叶研究所,浙江 杭州 310008
陈林波,男,研究员,主要从事茶树资源育种研究。

收稿日期: 2019-03-04

  修回日期: 2019-05-25

  网络出版日期: 2019-12-24

基金资助

国家自然科学基金项目(No.31560220)、国家重点研发项目(2016YFD0200903)、国家茶叶额产业体系(CARS-19)、云南省人才培养计划项目(2015HB105)

Screening of miRNA Related to Anthocyanin Synthesis in Tea Cultivar ‘Zijuan’ Based on High Throughput Sequencing

  • CHEN Linbo ,
  • XIA Lifei ,
  • LIU Yue ,
  • SUN Yunnan ,
  • JIANG Huibing ,
  • TIAN Yiping ,
  • CHEN Liang
Expand
  • 1. Tea Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Engineering Research Centerof Tea Germplasm Innovation and Matching Cultivation /Yunnan Provincial Key Laboratory of Tea Science, Menghai 666201, China;
    2. Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China

Received date: 2019-03-04

  Revised date: 2019-05-25

  Online published: 2019-12-24

摘要

为筛选调控紫娟茶树花青素合成相关miRNA,以茶树品种紫娟(ZJ)、云抗10号(YK)和福鼎大白茶(FD)为材料,构建了miRNA文库。鉴定出46种已知的miRNAs和67种新的miRNAs,预测到具有注释的靶基因765个。通过差异表达分析,筛选出在ZJ与YK、ZJ与FD共有差异表达的miRNA 24个。通过对24个差异表达miRNA的靶基因分析,筛选出可能参与调控花青素合成的miRNA 4个,包括miR828a、miR845c、novel_14和novel_87,其预测的靶基因包括转录因子基因MYB4MYB23MYB26MYB82bHLH74以及4-香豆酰辅酶A链接酶(4CL)、二氢黄酮醇4-还原酶(DFR)和UDP-葡萄糖黄酮3-O-葡糖基转移酶(UFGT)等基因。利用RT-PCR分析8个差异表达的miRNA,其结果与转录组分析一致。本研究结果为进一步开展茶树花青素生物合成的调控机制研究奠定基础。

本文引用格式

陈林波 , 夏丽飞 , 刘悦 , 孙云南 , 蒋会兵 , 田易萍 , 陈亮 . 基于高通量测序筛选‘紫娟’花青素合成相关的miRNA[J]. 茶叶科学, 2019 , 39(6) : 681 -691 . DOI: 10.13305/j.cnki.jts.2019.06.007

Abstract

In order to screen the miRNAs related to anthocyanin synthesis in 'Zijuan', the miRNA library was constructed by using the tea cultivars 'Zijuan' (ZJ), 'Yunkang 10' (YK) and 'Fuding Dabaicha' (FD). In this study, 46 known miRNAs and 67 unknown miRNAs were identified, and 765 annotated target genes were predicted. A total of 24 miRNAs were screened out, which were differentially expressed between ZJ and YK, and between ZJ and FD. Four target miRNAs involved in the regulation of anthocyanin synthesis, namely miR828a, miR845c, novel_14 and novel_87, were identified by target gene analysis of 24 differentially expressed miRNAs. The predicted target genes include transcription factor genes MYB4, MYB23, MYB26, MYB82, bHLH74 and 4CL (4-coincyl-CoA-linked enzyme), DFR (dihydroflavonol 4-reductase) and UFGT (UDP-glucoside flavonoid 3-O-glucosyltransferase). Eight differentially expressed miRNAs were analyzed by RT-PCR and the results were consistent with transcriptome analysis. Finally, a theoretical basis for further study of regulation mechanisms related to anthocyanin biosynthesis in tea plant was provided.

参考文献

[1] Sun F, Guo G, Du J, et al.Whole-genome discovery of miRNAs and their targets in wheat (Triticum aestivum L.)[J]. BMC Plant Biology, 2014, 14(1): 142. DOI: 10.1186/1471-2229-14-142.
[2] Baulcombe D.RNA silencing in plants[J]. Nature, 2004, 431: 356-363.
[3] Gou J Y, Felippes F F, Liu C J, et al.Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-Targeted SPL transcription factor[J]. The Plant Cell, 2011, 23(4): 1512-1522.
[4] Ang G, Jun Y, Gu Y, et al.Effective small RNA destruction by the expression of a short tandem target mimic in Arabidopsis[J]. The Plant Cell, 2012, 24(2): 415-427.
[5] Hsteh L C, LIN C I, Shih C C, et al.Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing[J]. Plant Physiology, 2009, 151(4): 2120-2132.
[6] Wang L, Zeng H Q, Song J, et al.miRNA778 and SUVH6 are involved in phosphate homeostasis in Arabidopsis[J]. Plant Science, 2015, 238: 273-285.
[7] Jia X Y, Shen J, Liu H, et al.Small tandem target mimic-mediated blockage of microRNA858 induces anthocyanin accumulation in tomato[J]. Planta, 2015, 242(1): 283-293.
[8] Jiang X L, Huang K Y, Zheng G S, et al.CsMYB5a and CsMYB5e from Camellia sinensis differentially regulate anthocyanin and proanthocyanidin biosynthesis[J]. Plant Science, 2018, 270: 209-220.
[9] Cui X, Wang Y X, Liu Z W, et al.Transcriptome-wide identification and expression profile analysis of the bHLH family genes in Camellia sinensis[J].Functional & Integrative Genomics, 2018, 18(5): 489-503.
[10] Punyasiri PAN, Abeysinghe ISB, Kumar V, et al.Flavonoid biosynthesis in the tea plant Camellia sinensis: properties of enzymes of the prominent epicatechin and catechin pathways[J]. Arch. Biochem. Biophys, 2004. 431(1): 22-30.
[11] Singh K, Rani A, Kuma S, et al.An early gene of flavonoid pathway, flavanone 3-hydroxylase, exhibits a positive relationship with the concentration of catechins in tea (Camellia sinensis)[J]. Tree Physiol, 2008, 28(9): 1349-1356.
[12] Lv H P, Dai W D, Tan J F, et al.Identification of the anthocyanins from the purple leaf coloured tea cultivar Zijuan (Camellia sinensis var. assamica) and characterization of their antioxidant activities[J]. Journal of Functional Foods, 2015, 17: 449-458.
[13] Shen J Z, Zou Z W, Zhang X Z, et al.Metabolic analyses reveal different mechanisms of leaf color change in two purple-leaf tea plant(Camellia sinensis L.) cultivars[J]. Horticulture Research, 2018, 5(1): 7. DOI: 10.1038/s41438-017-0010-1.
[14] 费旭元, 林智, 梁名志, 等. 响应面法优化“紫娟”茶中花青素提取工艺的研究[J]. 茶叶科学, 2012, 32(3): 197-202.
[15] 吕海鹏, 梁名志, 张悦, 等. 特异茶树品种“紫娟”不同茶产品主要化学成分及其抗氧化活性分析[J]. 食品科学, 2016, 37(12): 122-127.
[16] Wen M, Shen Y, Shi S H, et al.miREvo: An Integrative microRNA evolutionary analysis platform for next-generation sequencing experiments[J]. BMC Bioinformatics, 2012, 13(1): 140. DOI: 10.1186/1471-2105-13-140.
[17] Friedlander M R, Mackowiak S D, Li N, et al.miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades[J]. Nucleic Acids Research, 2012, 40(1): 37-52.
[18] Wu H J, Ma Y K, Chen T, et al.PsRobot: a web-based plant small RNA meta-analysis toolbox[J]. Nucleic Acids Research, 2012, 40(W1): W22-W28. DOI: 10.1093/nar/gks554.
[19] 蒋会兵, 夏丽飞, 田易萍, 等. 基于转录组测序的紫芽茶树花青素合成相关基因分析[J]. 植物遗传资源学报, 2018, 19(5): 967-978.
[20] Wang L, Feng Z, Wang X, et al.DEGseq: an R package for identifying deferentially expressed genes from RNA-seq data[J]. Bioinformatics, 2010, 26(1): 136-138.
[21] 谢小芳, 添先凤, 江昌俊, 等. 茶树低温胁迫下microRNA实时定量PCR内参基因的筛选[J]. 茶叶科学, 2015, 35(6): 596-604.
[22] Zhang Y, Zhu X J, Chen X, et al.Identification and characterization of cold-responsive microRNAs in tea plant (Camelliasinensis) and their targets using high-throughput sequencing and degradome analysis[J]. BMC Plant Biology, 2014, 14: 271. DOI:10.1186/s12870-014-0271-x.
[23] Chen J L, Zheng Y, Qin L, et al.Identification of miRNAs and their targets through high-through put sequencing and degradome analysis in male and female Asparagus officinalis[J]. BMC Plant Biology, 2016, 16(1): 80. DOI: 10.1186/s12870-016-0770-z.
[24] Mecchia M A, Debernardi J M, Rodriguez R E, et al.MicroRNA miR396 and RDR6 synergistically regulate leaf development[J]. Mechanisms of Development, 2013, 130(1): 2-13.
[25] Zhang W, Xie Y, Xu L, et al.Identification of microRNAs and their target genes explores miRNA-mediated regulatory network of cytoplasmic male sterility occurrence during anther development in radish (Raphanus sativus L.)[J]. Frontiers in Plant Science, 2016, 7: 1054. DOI: 10.3389/fpls.2016.01054.
[26] Yang X, Zhao Y, Xie D, et al.Identification and functional analysis of microRNAs involved in the anther development in cotton genic male sterile line Yu98-8A[J]. International Journal of Molecular Sciences, 2016, 17(10): 1677. DOI: 10.3390/ijms17101677.
[27] Liu J, Yuan Y, Wang Y L, et al.Regulation of fatty acid and flavonoid biosynthesis by miRNAs in Lonicera japonica[J]. Royal Society of Chemistry, 2017, 7: 35426-35437.
[28] Sun Y, Qiu Y, Duan M, et al.Identification of anthocyanin biosynthesis related microRNAs in a distinctive Chinese radish (Raphanus sativus L.) by high-throughput sequencing[J]. Molecular Genetics & Genomics, 2017, 292(1): 215-229.
[29] Shen E M, Singh S K, Ghosh J S, et al.The miRNAome of Catharanthus roseus: identification, expression analysis, and potential roles of microRNAs in regulation of terpenoid indole alkaloid biosynthesis[J]. Scientific Reports, 2017, 7: 43027. DOI: 10.1038/srep43027.
[30] Liu N, Tu L, Wang L, et al.MicroRNA 157-targeted SPL genes regulate floral organ size and ovule production in cotton[J]. BMC Plant Biology, 2017, 17: 7. DOI: 10.1186/s12870-016-0969-z.
[31] Yang F X, Cai J, Yang Y, et al.Overexpression of microRNA828 reduces anthocyanin accumulation in Arabidopsis[J]. Plant Cell Tiss Organ Cult, 2013, 115(2): 159-167.
[32] Baksa I, Nagy T, Barta E, et al.Identification of Nicotiana benthamiana microRNAs and their targets using high through put sequencing and degradome analysis[J]. BMC Genomics, 2015, 16(1): 1025. DOI: 10.1186/s12864-015-2209-6.
[33] Wang L, Du H Y, Ta-na W Y. Genome-wide identification of MicroRNAs and their targets in the leaves and fruits of Eucommia ulmoides using high-through put sequencing[J]. Frontiers in Plant Science, 2016, 7: 1632. DOI: 10.3389/fpls.2016.01632.
文章导航

/