[1] |
Sun F, Guo G, Du J, et al.Whole-genome discovery of miRNAs and their targets in wheat (Triticum aestivum L.)[J]. BMC Plant Biology, 2014, 14(1): 142. DOI: 10.1186/1471-2229-14-142.
|
[2] |
Baulcombe D.RNA silencing in plants[J]. Nature, 2004, 431: 356-363.
|
[3] |
Gou J Y, Felippes F F, Liu C J, et al.Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-Targeted SPL transcription factor[J]. The Plant Cell, 2011, 23(4): 1512-1522.
|
[4] |
Ang G, Jun Y, Gu Y, et al.Effective small RNA destruction by the expression of a short tandem target mimic in Arabidopsis[J]. The Plant Cell, 2012, 24(2): 415-427.
|
[5] |
Hsteh L C, LIN C I, Shih C C, et al.Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing[J]. Plant Physiology, 2009, 151(4): 2120-2132.
|
[6] |
Wang L, Zeng H Q, Song J, et al.miRNA778 and SUVH6 are involved in phosphate homeostasis in Arabidopsis[J]. Plant Science, 2015, 238: 273-285.
|
[7] |
Jia X Y, Shen J, Liu H, et al.Small tandem target mimic-mediated blockage of microRNA858 induces anthocyanin accumulation in tomato[J]. Planta, 2015, 242(1): 283-293.
|
[8] |
Jiang X L, Huang K Y, Zheng G S, et al.CsMYB5a and CsMYB5e from Camellia sinensis differentially regulate anthocyanin and proanthocyanidin biosynthesis[J]. Plant Science, 2018, 270: 209-220.
|
[9] |
Cui X, Wang Y X, Liu Z W, et al.Transcriptome-wide identification and expression profile analysis of the bHLH family genes in Camellia sinensis[J].Functional & Integrative Genomics, 2018, 18(5): 489-503.
|
[10] |
Punyasiri PAN, Abeysinghe ISB, Kumar V, et al.Flavonoid biosynthesis in the tea plant Camellia sinensis: properties of enzymes of the prominent epicatechin and catechin pathways[J]. Arch. Biochem. Biophys, 2004. 431(1): 22-30.
|
[11] |
Singh K, Rani A, Kuma S, et al.An early gene of flavonoid pathway, flavanone 3-hydroxylase, exhibits a positive relationship with the concentration of catechins in tea (Camellia sinensis)[J]. Tree Physiol, 2008, 28(9): 1349-1356.
|
[12] |
Lv H P, Dai W D, Tan J F, et al.Identification of the anthocyanins from the purple leaf coloured tea cultivar Zijuan (Camellia sinensis var. assamica) and characterization of their antioxidant activities[J]. Journal of Functional Foods, 2015, 17: 449-458.
|
[13] |
Shen J Z, Zou Z W, Zhang X Z, et al.Metabolic analyses reveal different mechanisms of leaf color change in two purple-leaf tea plant(Camellia sinensis L.) cultivars[J]. Horticulture Research, 2018, 5(1): 7. DOI: 10.1038/s41438-017-0010-1.
|
[14] |
费旭元, 林智, 梁名志, 等. 响应面法优化“紫娟”茶中花青素提取工艺的研究[J]. 茶叶科学, 2012, 32(3): 197-202.
|
[15] |
吕海鹏, 梁名志, 张悦, 等. 特异茶树品种“紫娟”不同茶产品主要化学成分及其抗氧化活性分析[J]. 食品科学, 2016, 37(12): 122-127.
|
[16] |
Wen M, Shen Y, Shi S H, et al.miREvo: An Integrative microRNA evolutionary analysis platform for next-generation sequencing experiments[J]. BMC Bioinformatics, 2012, 13(1): 140. DOI: 10.1186/1471-2105-13-140.
|
[17] |
Friedlander M R, Mackowiak S D, Li N, et al.miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades[J]. Nucleic Acids Research, 2012, 40(1): 37-52.
|
[18] |
Wu H J, Ma Y K, Chen T, et al.PsRobot: a web-based plant small RNA meta-analysis toolbox[J]. Nucleic Acids Research, 2012, 40(W1): W22-W28. DOI: 10.1093/nar/gks554.
|
[19] |
蒋会兵, 夏丽飞, 田易萍, 等. 基于转录组测序的紫芽茶树花青素合成相关基因分析[J]. 植物遗传资源学报, 2018, 19(5): 967-978.
|
[20] |
Wang L, Feng Z, Wang X, et al.DEGseq: an R package for identifying deferentially expressed genes from RNA-seq data[J]. Bioinformatics, 2010, 26(1): 136-138.
|
[21] |
谢小芳, 添先凤, 江昌俊, 等. 茶树低温胁迫下microRNA实时定量PCR内参基因的筛选[J]. 茶叶科学, 2015, 35(6): 596-604.
|
[22] |
Zhang Y, Zhu X J, Chen X, et al.Identification and characterization of cold-responsive microRNAs in tea plant (Camelliasinensis) and their targets using high-throughput sequencing and degradome analysis[J]. BMC Plant Biology, 2014, 14: 271. DOI:10.1186/s12870-014-0271-x.
|
[23] |
Chen J L, Zheng Y, Qin L, et al.Identification of miRNAs and their targets through high-through put sequencing and degradome analysis in male and female Asparagus officinalis[J]. BMC Plant Biology, 2016, 16(1): 80. DOI: 10.1186/s12870-016-0770-z.
|
[24] |
Mecchia M A, Debernardi J M, Rodriguez R E, et al.MicroRNA miR396 and RDR6 synergistically regulate leaf development[J]. Mechanisms of Development, 2013, 130(1): 2-13.
|
[25] |
Zhang W, Xie Y, Xu L, et al.Identification of microRNAs and their target genes explores miRNA-mediated regulatory network of cytoplasmic male sterility occurrence during anther development in radish (Raphanus sativus L.)[J]. Frontiers in Plant Science, 2016, 7: 1054. DOI: 10.3389/fpls.2016.01054.
|
[26] |
Yang X, Zhao Y, Xie D, et al.Identification and functional analysis of microRNAs involved in the anther development in cotton genic male sterile line Yu98-8A[J]. International Journal of Molecular Sciences, 2016, 17(10): 1677. DOI: 10.3390/ijms17101677.
|
[27] |
Liu J, Yuan Y, Wang Y L, et al.Regulation of fatty acid and flavonoid biosynthesis by miRNAs in Lonicera japonica[J]. Royal Society of Chemistry, 2017, 7: 35426-35437.
|
[28] |
Sun Y, Qiu Y, Duan M, et al.Identification of anthocyanin biosynthesis related microRNAs in a distinctive Chinese radish (Raphanus sativus L.) by high-throughput sequencing[J]. Molecular Genetics & Genomics, 2017, 292(1): 215-229.
|
[29] |
Shen E M, Singh S K, Ghosh J S, et al.The miRNAome of Catharanthus roseus: identification, expression analysis, and potential roles of microRNAs in regulation of terpenoid indole alkaloid biosynthesis[J]. Scientific Reports, 2017, 7: 43027. DOI: 10.1038/srep43027.
|
[30] |
Liu N, Tu L, Wang L, et al.MicroRNA 157-targeted SPL genes regulate floral organ size and ovule production in cotton[J]. BMC Plant Biology, 2017, 17: 7. DOI: 10.1186/s12870-016-0969-z.
|
[31] |
Yang F X, Cai J, Yang Y, et al.Overexpression of microRNA828 reduces anthocyanin accumulation in Arabidopsis[J]. Plant Cell Tiss Organ Cult, 2013, 115(2): 159-167.
|
[32] |
Baksa I, Nagy T, Barta E, et al.Identification of Nicotiana benthamiana microRNAs and their targets using high through put sequencing and degradome analysis[J]. BMC Genomics, 2015, 16(1): 1025. DOI: 10.1186/s12864-015-2209-6.
|
[33] |
Wang L, Du H Y, Ta-na W Y. Genome-wide identification of MicroRNAs and their targets in the leaves and fruits of Eucommia ulmoides using high-through put sequencing[J]. Frontiers in Plant Science, 2016, 7: 1632. DOI: 10.3389/fpls.2016.01632.
|