欢迎访问《茶叶科学》,今天是
综述

茶树根际微生物研究进展

  • 黄芳芳 ,
  • 李勤 ,
  • 黄建安
展开
  • 1.湖南农业大学茶学教育部重点实验室,湖南 长沙 410128;
    2.国家植物功能成分利用工程技术研究中心,湖南 长沙 410128;
    3.植物功能成分利用省部共建协同创新中心,湖南 长沙 410128
黄芳芳,女,硕士研究生,主要从事茶树栽培育种及分子生物学研究,1752257701@qq.com。

收稿日期: 2020-03-12

  修回日期: 2020-05-21

  网络出版日期: 2020-12-10

基金资助

国家自然科学基金联合基金项目(U19A2030)

Research Progress of Tea Rhizosphere Microorganisms

  • HUANG Fangfang ,
  • LI Qin ,
  • HUANG Jian'an
Expand
  • 1. Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China;
    2. National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China;
    3. Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha 410128, China

Received date: 2020-03-12

  Revised date: 2020-05-21

  Online published: 2020-12-10

摘要

根际微生物群落种类丰富、数量庞大,影响植物的生理和发育,被称为植物的第二基因组。茶树根际特定的生态系统对茶树的生长和健康至关重要,了解茶树根际微生物对提高茶树根际生态系统功能非常关键。本文结合根际微生物的生态功能和研究方法,从茶树根际微生物的多样性及其影响因素等方面综述茶树根际微生物的研究进展,并对亟待研究的方向进行展望,以期为改善茶树根际微域环境,提高茶叶品质提供参考。

本文引用格式

黄芳芳 , 李勤 , 黄建安 . 茶树根际微生物研究进展[J]. 茶叶科学, 2020 , 40(6) : 715 -723 . DOI: 10.13305/j.cnki.jts.2020.06.002

Abstract

The rhizosphere microbial community is rich in variety and quantity, which affects the physiology and development of plants and is called the second genome of plants. The specific ecosystem of tea rhizosphere is very important for the growth and health of tea plants, and understanding the microbes in the rhizosphere of tea plants is very important to improve the function of its rhizosphere ecosystems. Based on the ecological functions of rhizosphere microorganisms and the progress of their research methods, the research progress of tea rhizosphere microorganisms from the aspects of the diversity of tea rhizosphere microorganisms, its influencing factors and prospects for the urgent research directions was summarized. The paper provided a reference for improving the micro-environment of tea plants and tea quality.

参考文献

[1] Pineda A, Zheng S J, Loon J J A V, et al. Helping plants to deal with insects: the role of beneficial soil-borne microbes[J]. Trends in Plant Science, 2010, 15(9): 507-514.
[2] Bever J D, Platt T G, Morton E R.Microbial population and community dynamics on plant roots and their feedbacks on plant communities[J]. Annual Review of Microbiology, 2012, 66(1): 265-283.
[3] 伍丽. 不同品种茶树根际微生物的研究[D]. 杨凌: 西北农林科技大学, 2010.
Wu L.The study of the rhizosphere microorganism of varieties of tea [D]. Yangling: Northwest A&F University, 2010.
[4] Bending G D, Turner M K, Rayns F, et al.Microbial and biochemical soil quality indicators and their potential for differentiating areas under contrasting agricultural management regimes[J]. Soil Biology & Biochemistry, 2004, 36(11): 1785-1792.
[5] Chang Y J, Hussain A K, Stephen J R, et al.Impact of herbicides on the abundance and structure of indigenous β-subgroup ammonia-oxidizer communities in soil microcosms[J]. Environmental Toxicology and Chemistry, 2001, 20(11): 2462-2468.
[6] Helgason T, Daniell T J, Husband R, et al.Ploughing up the wood-wide web?[J]. Nature, 1998, 394(6692): 431. doi: 10.1038/28764.
[7] Bais H P, Weir T L, Perry L G, et al.The role of root exudates in rhizosphere interactions with plants and other organisms[J]. Annual Review of Plant Biology, 2006, 57(1): 233-266.
[8] Liu J, Guo C, Chen Z L, et al.Mycorrhizal inoculation modulates root morphology and root phytohormone responses in trifoliate orange under drought stress[J]. Emirates Journal of Food and Agriculture, 2016, 28(4): 251-256.
[9] 薛英龙, 李春越, 王苁蓉, 等. 丛枝菌根真菌促进植物摄取土壤磷的作用机制[J]. 水土保持学报, 2019, 33(6): 10-20.
Xue Y L, Li C Y, Wang C R, et al.Mechanisms of phosphorous uptake from soils by arbuscular mycorrhizal fungi[J]. Journal of Soil and Water Conservation, 2019, 33(6): 10-20.
[10] Abbott L K, Murphy D V.Soil biological fertility[M]. Dordrecht: Springer, 2007: 129-163.
[11] Liu D, Liu H B, Li X H, et al.Multiple phytohormones and phytoalexins are involved in disease resistance to Magnaporthe oryzae invaded from roots in rice[J]. Physiologia Plantarum, 2014, 152(3): 486-500.
[12] Egamberdieva D.Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat[J]. Acta Physiologiae Plantarum, 2009, 31(4): 861-864.
[13] Xu J, Wang W, Sun J, et al.Involvement of auxin and nitric oxide in plant Cd-stress responses[J]. Plant and Soil, 2011, 346(1/2): 107-119.
[14] Santhanam R, Luu V T, Weinhold A, et al.Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping[J]. Proceedings of the National Academy of Sciences, 2015, 112(36): E5013-E5020.
[15] Bulgarelli D, Schlaeppi K, Spaepen S, et al.Structure and functions of the bacterial microbiota of plants[J]. Annual Review of Plant Biology, 2013, 64(1): 807-838.
[16] 刘家女, 房晓婷, 王文静. 植物修复及强化调控系统根际土壤微生物研究综述[J]. 安全与环境学报, 2015, 15(1): 222-227.
Liu J N, Fang X T, Wang W J.Review on microorganisms in phytoremediation and the corresponding measures for its enhanced regulation[J]. Journal of Safety and Environment, 2015, 15(1): 222-227.
[17] Nele W, Daniel V D L, Safiyh T, et al. Phytoremediation: plant-endophyte partnerships take the challenge[J]. Current Opinion in Biotechnology, 2009, 20(2): 248-254.
[18] Miransari M.Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals[J]. Biotechnology Advances, 2011, 29(6): 645-653.
[19] Berndt G.Biological substitutes for pesticides[J]. Trends in Biotechnology, 2002, 20(8): 338-343.
[20] Parke J L, Gurian-Sherman D.Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains[J]. Annual Review of Phytopathology, 2001, 39(1): 225-258.
[21] 陆雅海, 张福锁. 根际微生物研究进展[J]. 土壤, 2006, 38(2): 113-121.
Lu Y H, Zhang F S.The advances in rhizosphere microbiology[J]. Soils, 2006, 38(2): 113-121.
[22] Hart M.Methods of studying soil microbial diversity[J]. Journal of Microbiological Methods, 2004, 58(2): 169-188.
[23] 李国娟, 柳纪省, 李宝玉, 等. 微生物分离与培养的新方法与新技术[J]. 畜牧兽医科技信息, 2009(11): 10-11.
Li G J, Liu J S, Li B Y, et al.New methods and technologies for microbial isolation and cultivation[J]. Chinese Journal of Animal Husbandry and Veterinary Medicine, 2009(11): 10-11.
[24] 刘国华, 叶正芳, 吴为中. 土壤微生物群落多样性解析法:从培养到非培养[J]. 生态学报, 2012, 32(14): 4421-4433.
Liu G H, Ye Z F, Wu W Z.Culture-dependent and culture-independent approaches to studying soil microbial diversity[J]. Acta Ecologica Sinica, 2012, 32(14): 4421-4433.
[25] Torsvik L, Ovreas V.Microbial diversity and function in soil: from genes to ecosystems[J]. Current Opinion in Microbiology, 2002, 5(3): 240-245.
[26] Torsvik V, Sørheim R, Goksøyr J.Total bacterial diversity in soil and sediment communities: a review[J]. Journal of Industrial Microbiology, 1996, 17: 170-178.
[27] 张于光, 李迪强, 肖启明. 分子生态学技术及其在环境微生物研究中的应用[J]. 微生物学杂志, 2005, 25(5): 91-94.
Zhang Y G, Li D Q, Xiao Q M.Molecular ecology technology and its application in environmental microbiology study[J]. Journal of Microbiology, 2005, 25(5): 91-94.
[28] 谢光新, 张荣先, 黄雪飞, 等. 不同生长年限茶树根际微生物分布的差异[J]. 湖北农业科学, 2012(15): 34-36.
Xie G X, Zhang R X, Huang X F, et al.Distribution of root and rhizosphere microorganism in tea tree at different ages[J]. Hubei Agricultural Sciences, 2012(15): 34-36.
[29] Pandey A, Palni L M.Bacillus species: the dominant bacteria of the rhizosphere of established tea bushes[J]. Microbiological Research, 1997, 152(4): 359-365.
[30] Pandey A, Palni L M, Bisht D.Dominant fungi in the rhizosphere of established tea bushes and their interaction with the dominant bacteria under in situ conditions[J]. Microbiological Research, 2001, 156(4): 377-382.
[31] 成泽艳. 茶树根际微生物区系分析及生物菌肥的初步研制[D]. 成都: 四川农业大学, 2004: 21.
Chen Z Y.Study on rhizosphere microflora and biofertilizer of tea [D]. Chengdu: Sichuan Agricultural University, 2004: 21.
[32] 许广, 王梦姣, 邓百万, 等. 不同植茶年限茶树根际土壤细菌多样性及群落结构研究[J]. 生物技术通报, 2020, 36(3): 124-132.
Xu G, Wang M J, Deng B W, et al.Bacterial diversity and community structure of rhizosphere soil of tea plants in different years of planting[J]. Biotechnology Bulletin, 2020, 36(3): 124-132.
[33] 赵兴丽, 卯婷婷, 张金峰, 等. 不同品种茶树根际土壤真菌群落多样性及结构特征[J]. 茶叶通讯, 2019, 46(3): 284-290.
Zhao X L, Mao T T, Zhang J F, et al.Diversity and structural characteristics of fungi community in rhizospheres soil of different varieties of Camellia sinensis[J]. Journal of Tea Communication, 2019, 46(3): 284-290.
[34] 王贵卫. 茶树根际环境因子—细菌种群及功能相关性探究[D]. 杭州: 浙江理工大学, 2018.
Wang G W.Correlation between microenvironments and bacterial communities and function in the rhizosphere Camellia sinensis [D]. Hangzhou: Zhejiang Sci-Tech University, 2018.
[35] 田永辉. 不同土壤对茶树根际固氮微生物的影响[J]. 茶叶通讯, 1998(4): 21-22.
Tian Y H.Effects of different soils on nitrogen-fixing microorganisms in tea rhizosphere[J]. Journal of Tea Communication, 1998(4): 21-22.
[36] 卢开阳. 云南11个茶山的大叶种茶树根际土壤微生物遗传多样性研究[D]. 昆明: 云南师范大学, 2016.
Lu K Y.Study on microbial genetic diversity in large leaf tea rhizosphere soil at 11mountains from Yunnan province [D]. Kunming: Yunnan Normal University, 2016.
[37] 梁月荣, 刘祖生, 陆建良, 等. 茶树根际土壤抗酸铝真菌ALF-1(Neurospora sp.)对酸性土壤pH的影响[J]. 茶叶科学, 1999, 19(2): 115-118.
Liang Y R, Liu Z S, Lu J L, et al.Effect of aluminum resistant fungus ALF 1 (Neurospora sp.) from tea rhizospheric soil on the pH value of acidic soil[J]. Journal of Tea Science, 1999, 19(2): 115-118.
[38] Cakmakci R, Donmez M F, Erturk Y, et al.Diversity and metabolic potential of culturable bacteria from the rhizosphere of Turkish tea grown in acidic soils[J]. Plant and Soil, 2010, 332(1/2): 299-318.
[39] Sarkar S, Seenivasan S, Asir R P S. Biodegradation of propargite by Pseudomonas putida, isolated from tea rhizosphere[J]. Journal of Hazardous Materials, 2010, 174(1/3): 295-298.
[40] Saikia R, Sarma R K, Yadav A, et al.Genetic and functional diversity among the antagonistic potential fluorescent pseudomonads isolated from tea rhizosphere[J]. Current Microbiology, 2011, 62(2): 434-444.
[41] 高旭晖. 茶树根际微生物与根际效应[J]. 茶叶通讯, 2000(1): 35-38.
Gao X H.Rhizosphere microorganisms and effects of tea rhizosphere[J]. Journal of Tea Communication, 2000(1): 35-38.
[42] Thakur R, Sharma K C, Gulati A, et al.Stress-tolerant Viridibacillus arenosi strain IHB B 7171 from tea rhizosphere as a potential broad-spectrum microbial inoculant[J]. Indian Journal of Microbiology, 2017, 57(2): 195-200.
[43] Purkayastha G D, Mangar P, Saha A, et al.Evaluation of the biocontrol efficacy of a Serratia marcescens strain indigenous to tea rhizosphere for the management of root rot disease in tea[J]. Plos One, 2018, 13(2): e0191761. doi: 10.1371/journal.pone.0191761.
[44] Wu Q S, Shao Y D, Gao X B, et al.Characterization of AMF-diversity of endosphere versus rhizosphere of tea (Camellia sinensis) crops[J]. Indian Journal of Agricultural Sciences, 2019, 89(2): 348-352.
[45] 何斐, 李冬花, 卜凡. 不同品种茶树根际AM真菌群落结构分析[J]. 茶叶科学, 2020, 40(3): 319-327.
He F, Li D H, Pu F.Analysis of Arbuscular mycorrhizal fungal community structure in the rhizosphere of different tea cultivars[J]. Journal of Tea Science, 2020, 40(3): 319-327.
[46] Singh S, Pandey A, Chaurasia B, et al.Diversity of arbuscular mycorrhizal fungi associated with the rhizosphere of tea growing in ‘natural’ and ‘cultivated’ ecosites[J]. Biology and Fertility of Soils, 2008, 44(3): 491-500.
[47] Sharma D, Kayang H.Effects of arbuscular mycorrhizal fungi (AMF) on Camellia sinensis (L.) O. Kuntze under greenhouse conditions[J]. Journal of Experimental Biology and Agricultural Sciences, 2017, 5(2): 235-241.
[48] Shao Y D, Zhang D J, Hu X C, et al.Mycorrhiza-induced changes in root growth and nutrient absorption of tea plants[J]. Plant Soil Environ, 2018, 64(6): 283-289.
[49] 许平辉. 丛枝菌根真菌(AMF)对水分胁迫下茶树生长及抗旱性的影响[D]. 杨凌: 西北农林科技大学, 2017.
Xu P H.Effects of arbusular mycorrhizal fungi on growth and drought resistance of tea plant under water stress [D]. Yangling: Northwest A&F University, 2017.
[50] 柳洁, 肖斌, 王丽霞, 等. 丛枝菌根真菌对茶树耐盐性的影响[J]. 西北农林科技大学学报(自然科学版), 2014, 42(3): 220-225.
Liu J, Xiao B, Wang L X.Influence of AMF on salt tolerance of tea[J]. Journal of Northwest A & F University (Natural Science Edition), 2014, 42(3): 220-225.
[51] Hu L, Robert C A M, Cadot S, et al. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota[J]. Nature Communications, 2018, 9(1): 2738-2850.
[52] Mendes R, Garbeva P, Raaijmakers J M.The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms[J]. Fems Microbiology Reviews, 2013, 37(5): 634-663.
[53] 刘红艳, 邓欣. 我国茶树根际微生物研究现状及展望[J]. 茶叶通讯, 2003(4): 14-18.
Liu H Y, Deng X.Research status and prospect of tea rhizosphere microorganisms in China[J]. Journal of Tea Communication, 2003(4): 14-18.
[54] Li Y, Li Z, Arafat Y, et al.Characterizing rhizosphere microbial communities in long-term monoculture tea orchards by fatty acid profiles and substrate utilization[J]. European Journal of Soil Biology, 2017, 81: 48-54.
[1] 杨扬, 刘炳君, 房江育, 等. 不同植茶年龄茶树根际与非根际土壤微生物及酶活性特征研究[J]. 中国农学通报, 2011, 27(27): 118-121.
Yang Y, Liu B J, Fang J Y, et al.The Study on characteristics of microbes and enzyme activity in rhizosphere and out-rhizosphere soil of tea garden at various ages[J]. Chinese Agricultural Science Bulletin, 2011, 27(27): 118-121.
[55] 黄祖法, 温琼英. 茶树根表微生物的初步调查[J]. 中国茶叶, 1982(6): 9-11.
Huang Z F, Wen Q Y.Preliminary investigation of microorganisms on tea root surface[J]. China Tea, 1982(6): 9-11.
[56] 田永辉. 不同树龄茶树根际固氮菌组成及多样性研究[J]. 福建茶叶, 2000(3): 19-21.
Tian Y H.Composition and diversity of nitrogen-fixing bacteria in the rhizosphere of tea of different ages[J]. Tea in Fujian, 2000(3): 19-21.
[57] Lin W W, Lin M H, Zhou H Y, et al.The effects of chemical and organic fertilizer usage on rhizosphere soil in tea orchards[J]. Plos One, 2019, 14(5): e0217018. doi: 10.1371/journal.pone.0217018.
[58] 罗毅, 苏有健, 张永利, 等. 不同施肥处理对茶树根际细菌多样性的影响[J]. 中国农学通报, 2014, 30(25): 177-183.
Luo Y, Su Y J, Zhang Y L, et al.Effect of fertilizer on tea plant rhizosphere bacteria diversity[J]. Chinese Agricultural Science Bulletin, 2014, 30(25): 177-183.
[59] 伍丽, 余有本, 周天山, 等. 茶树根际土壤因子对根际微生物数量的影响[J]. 西北农业学报, 2011, 20(4): 159-163.
W L, Yu Y B, Zhou T S, et al. Effects of soil factors on the distributions of tea rhizosphere microorganisms[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2011, 20(4): 159-163.
[60] 刘红艳, 张亚莲, 邓欣, 等. 不同栽培方式有机茶园土壤微生物群落组成、活性及脲酶活性比较[J]. 福建茶叶, 2007(4): 20-21.
Liu H Y, Zhang Y L, Deng X, et al.Comparison of soil microbial community composition, activity and urease activity in organic tea gardens with different cultivation methods[J]. Tea in Fujian, 2007(4): 20-21.
[61] Buée M, Boer W D, Martin F, et al.The rhizosphere zoo: an overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors[J]. Plant & Soil, 2009, 321(1/2): 189-212.
[62] Bever J D, Platt T G, Morton E R.Microbial population and community dynamics on plant roots and their feedbacks on plant communities[J]. Annual Review of Microbiology, 2012, 66(1): 265-283.
[63] Beckers B, Michiel O D B, Weyens N, et al. Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees[J]. Microbiome, 2017, 5(1): 25. doi: 10.1186/s40168-017-0241-2.
[64] Fitzpatrick C R, Copeland J, Wang P W, et al.Assembly and ecological function of the root microbiome across angiosperm plant species[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(6): E1157-E1165.
[65] Raaijmakers J M, Paulitz T C, Steinberg C, et al.The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms[J]. Plant & Soil, 2009, 321(1/2): 341-361.
文章导航

/