欢迎访问《茶叶科学》,今天是
研究报告

茶鲜叶挥发物组分及对茶树病原菌的熏蒸抑制作用

  • 智亚楠 ,
  • 徐运飞 ,
  • 朱明星 ,
  • 王春生 ,
  • 金银利 ,
  • 陈利军
展开
  • 1.信阳农林学院农学院,河南 信阳 464000;
    2.河南省豫南农作物有害生物绿色防控院士工作站,河南 信阳 464000
智亚楠,女,讲师,主要从事植物源农药与农药剂型研究,zhiyanan000@126.com。

收稿日期: 2020-06-08

  修回日期: 2020-07-28

  网络出版日期: 2021-06-15

基金资助

茶园化肥农药减施增效技术集成研究与示范(2016YFD0200900)、信阳农林学院科技创新团队项目(KJCXTD-201903)、河南省科技攻关项目(162102110085)

Volatile Organic Compounds from Fresh Tea Leaves and Their Fumigation Antifungal Activities on Fungal Pathogens of Tea Plants

  • ZHI Yanan ,
  • XU Yunfei ,
  • ZHU Mingxing ,
  • WANG Chunsheng ,
  • JIN Yinli ,
  • CHEN Lijun
Expand
  • 1. Agriculture College, Xinyang Agriculture and Forestry University, Xinyang 464000, China;
    2. Henan Provincial South Henan Crop Pest Green Prevention and Control Academician Workstation, Xinyang 464000, China

Received date: 2020-06-08

  Revised date: 2020-07-28

  Online published: 2021-06-15

摘要

为明确茶鲜叶中的挥发物组分及其与茶树主要病原菌之间的关系,利用HS-SPME-GC-MS法萃取分析茶鲜叶挥发物组分,并以茶褐枯病菌、茶云纹叶枯病菌、茶炭疽病菌、茶轮斑病菌为目标菌,测定茶鲜叶主要挥发物单体组分对病原菌的熏蒸抑制作用。结果显示,从茶鲜叶挥发物中分离到28个组分,鉴定出其中19个组分,占挥发物总量的94.405%,其主要组分为(Z)-己酸-3-己烯酯(18.395%)、乙酸叶醇酯(16.935%)、罗勒烯(12.615%)和顺-3-己烯基丁酯(11.210%),其中顺-3-己烯基丁酯对4种病原菌均具有熏蒸抑制作用,EC50均低于61.29 μL·L-1。结果表明,顺-3-己烯基丁酯有作为熏蒸型杀菌剂应用于茶树病害防控的潜力。

本文引用格式

智亚楠 , 徐运飞 , 朱明星 , 王春生 , 金银利 , 陈利军 . 茶鲜叶挥发物组分及对茶树病原菌的熏蒸抑制作用[J]. 茶叶科学, 2021 , 41(3) : 371 -378 . DOI: 10.13305/j.cnki.jts.2021.03.005

Abstract

In order to determine the relationship between volatile organic compounds (VOCs) from fresh tea leaves and the main fungal pathogens of tea plants, the VOCs from fresh tea leaves were extracted and analyzed by HS-SPME-GC-MS. The fumigation antifungal activities of volatile monomers from fresh tea leaves against four fungal pathogens including Botryosphaeria dothidea, Colletotrichum camelliae, Colletotrichum gloeosporioides, Pestalotiopsis theae were also studied. The results show that 28 chemical compounds were found from VOCs of fresh tea leaves, and 19 of them were characterized, accounting for 94.405% of the total VOCs. The main chemical compounds were hexanoic acid, 3-hexenyl ester, (Z)-hexanoic acid-3-hexenyl ester (18.395%), leaf acetate (16.935%), ocimene (12.615%), and cis-3-hexenyl butyrate (11.210%). Cis-3-hexenyl butyrate exhibited strong fumigation antifungal effect on the four tested fungal pathogens, and the EC50 were lower than 61.29 μL·L-1. In conclusion, cis-3-hexenyl butyrate can be used as a potential fumigant control of tea diseases.

参考文献

[1] 高宇, 孙晓玲, 金珊, 等. 绿叶挥发物及其生态功能研究进展[J]. 农学学报, 2012, 2(4): 11-23.
Gao Y, Sun X L, Jin S, et al.Advances in green leaf volatiles and its ecological functions[J]. Journal of Agriculture, 2012, 2(4): 11-23.
[2] Delory B M, Delaplace P, Fauconnier M L, et al.Root-emitted volatile organic compounds: can they mediate belowground plant-plant interactions?[J]. Plant and Soil, 2016, 402(1): 1-26.
[3] Zhang Z Q, Luo Z X, Gao Y, Bian L, et al.Volatile from non-host aromatic plants repel tea green leaf hopper Empoasca vitis[J]. Entomologia Experimentalis et Applicata, 2014, 153(2): 156-169.
[4] 王梦馨, 李辉仙, 武文竹, 等. 假眼小绿叶蝉对茶梢挥发物的行为反应[J]. 应用昆虫学报, 2016, 53(3): 507-515.
Wang M X, Li H X, Wu W Z, et al.Behavioral responses of Empoasca vitis Göthe to volatiles from tea shoots[J]. Chinese Journal of Applied Entomology, 2016, 53(3): 507-515.
[5] 黄安平, 韩宝瑜, 包小村. 茶刺蛾危害后茶树挥发性有机化合物释放变化[J]. 应用与环境生物学报, 2011, 17(6): 819-823.
Huang A P, Han B Y, Bao X C.Change in volatile organic compounds from Camellia sinensis (L.) O. Kuntze damaged by Iragoides fasciata Moore (Lepidoptera: Eucleidae)[J]. Chinese Journal of Applied and Environmental Biology, 2011, 17(6): 819-823.
[6] 陈宗懋, 许宁, 韩宝瑜, 等. 茶树-害虫-天敌间的化学信息联系[J]. 茶叶科学, 2003, 23(s1): 38-45.
Chen Z M, Xu N, Han B Y, et al.Chemical communication between tea plant-herbivore-natural enemies[J]. Journal of Tea Science, 2003, 23(s1): 38-45.
[7] 何培青, 柳海燕, 郝林华, 等. 植物挥发性物质与植物抗病防御反应[J]. 植物生理学通讯, 2005, 41(1): 105-110.
He P Q, Liu H Y, Hao L H, et al.Volatile organic compounds and plant defence against pathogenic disease[J]. Plant Physiology Communications, 2005, 41(1): 105-110.
[8] Frost C J, Appel H M, Carlson J E, et al.Within-plant signalling via volatiles overcomes vascular constraints on systemic signalling and primes responses against herbivores[J]. Ecology Letters, 2007, 10(6): 490-498.
[9] 戚丽, 吴慧平, 宛晓春, 等. 茶叶中游离态和键合态香气组分对茶云纹叶枯病致病菌的抑制作用[J]. 南京农业大学学报, 2008(1): 42-46.
Qi L, Wu H P, Wan X C, et al.Antifungal activitives of free and bound from aroma components in leaves of tea against Colletotrichum camelliae Massea[J]. Journal of Nanjing Agricultural University, 2008(1): 42-46.
[10] Zhang Z Z, Li Y B, Qi L, et al.Antifungal activity of major tea leaf volatile constituents toward Colletorichum camelliae Massea[J]. Journal of Agricultural and Food Chemistry, 2006(54): 3936-3940.
[11] 张春花, 单治国, 魏朝霞, 等. 茶饼病菌侵染对茶树挥发性物质的影响[J]. 茶叶科学, 2012, 32(4): 331-340.
Zhang C H, Shan Z G, Wei Z X, et al.Effects of Exobasidium vexans Massee infection on volatile components in tea plant (Camellia Sinensis var. assamica)[J]. Journal of Tea Science, 2012, 32(4): 331-340.
[12] 智亚楠, 陈月华, 陈平, 等. 蓝冰柏挥发油的化学组分及其抑菌活性分析[J]. 南方农业学报, 2018, 49(8): 1555-1560.
Zhi Y N, Chen Y H, Chen P, et al.Chemical constituents and antifungal activity of essential oil from Cupressus glabra ‘Blue Ice’[J]. Journal of Southern Agriculture, 2018, 49(8): 1555-1560.
[13] 陈利军, 智亚楠, 王国君, 等. 土荆芥果实挥发油的抑菌活性及其组分分析[J]. 河南农业科学, 2015, 44(1): 70-76.
Cheng L J, Zhi Y N, Wang G J, et al.Antifungal activity and chemical composition analysis of essential oil from fruit of Chenopodium ambrosioides L.[J]. Journal of Henan Agricultural Sciences, 2015, 44(1): 70-76.
[14] 陈利军, 智亚楠, 陈思宇, 等. 留兰香挥发油熏蒸抑菌活性研究[J]. 植物保护, 2019, 45(2): 75-80.
Cheng L J, Zhi Y N, Chen S Y, et al.Fumigant antifungal activities of essential oils from Mentha spicata[J]. Plant Protection, 2019, 45(2): 75-80.
[15] 陈利军, 陈月华, 周巍, 等. 河南鸡公山小鱼仙草挥发油的抑菌作用及组分分析[J]. 南方农业学报, 2016, 47(11): 1875-1879.
Cheng L J, Chen Y H, Zhou W, et al.Antifungal effect and chemical constituents of essential oil from Mosla dianthera in Jigong Mountain of Henan[J]. Journal of Southern Agriculture, 2016, 47(11): 1875-1879.
[16] Sellamuthu P S, Sivakumar D, Soundy P, et al.Essential oil vapours suppress the development of anthracnose and enhance defence related and antioxidant enzyme activities in avocado fruit[J]. Postharvest Biology and Technology, 2013, 81(3): 66-72.
[17] 巩卫琪, 穆宏磊, 郜海燕, 等. 香芹酚-β-环糊精包合物的制备及其抑菌效果[J]. 中国食品学报, 2015, 15(3): 114-119.
Gong W Q, Mu H L, Gao H Y, et al.Preparation of carvacrol-β-cyclodextrin inclusion complex and its antimicrobial activity[J]. Journal of Chinese Institute of Food Science and Technology, 2015, 15(3): 114-119.
[18] 安永学, 董芳. 5%香芹酚对辣椒白粉病的防治效果[J]. 兰州交通大学学报, 2016, 35(4): 162-164.
An Y X, Dong F.Control effect of 5% carvacrol SL on powdery mildew of pepper[J]. Journal of Lanzhou Jiaotong University, 2016, 35(4): 162-164.
[19] Zhou D, Wang Z, Li M, et al.Carvacrol and eugenol effectively inhibit Rhizopus stolonifer and control postharvest soft rot decay in peaches[J]. Journal of Applied Microbiology, 2018, 124(1): 166-178.
[20] 杨波, 王卉, 孙宏元, 等. 香芹酚包合物对莲雾采后保鲜效果的研究[J]. 食品工业, 2016, 37(7): 47-50.
Yang B, Wang H, Sun H Y, et al.Study on the effect of carvacrol inclusion complex on the preservation of postharvest wax-apple (Syzygium samarangense)[J]. The Food Industry, 2016, 37(7): 47-50.
[21] 中国农药信息网. 农药登记数据[DB/OL]. http://www.chinapesticide.org.cn/hysj/index.jhtml. China
Pesticide Information Network. Pesticide registration data [DB/OL]. http://www.chinapesticide.org.cn/hysj/index.jhtml.
[22] Zhao C X, Liang Y Z, Li X N.Study on chemical constituents and antibacterial activity of volatile oil from clove[J]. Natural Product Research and Development, 2006, 18(3): 381-385.
[23] 王润贤, 谢福灿, 曹仁勇, 等. 春秋季节不同品种茶鲜叶芳香物质成分分析[J]. 山西农业大学学报(自然科学版), 2012, 32(6): 517-525.
Wang R X, Xie F C, Cao R Y, et al.Analysis on the aroma components in fresh leaves of different varieties of teas in spring and autumn[J]. Journal of Shanxi Agricultural University (Nature Science Edition), 2012, 32(6): 517-525.
[24] 朱荫, 邵晨阳, 张悦, 等. 不同茶树品种龙井茶香气成分差异分析[J]. 食品工业科技, 2018, 39(23): 241-246, 254.
Zhu Y, Shao C Y, Zhang Y, et al.Comparison of differences in aroma constituents of Longjing tea produced from different tea germplasms[J]. Science and Technology of Food Industry, 2018, 39(23): 241-246, 254.
[25] 龙立梅, 宋沙沙, 李柰, 等. 3种名优绿茶特征香气成分的比较及种类判别分析[J]. 食品科学, 2015, 36(2): 114-119.
Long L M, Song S S, Li N, et al.Comparisons of characteristic aroma components and cultivar discriminant analysis of three varieties of famous green tea[J]. Food Science, 2015, 36(2): 114-119.
文章导航

/