欢迎访问《茶叶科学》,今天是
研究报告

外源5-ALA对干旱胁迫下茶树叶绿素合成和荧光特性及关键酶基因表达的影响

  • 杨妮 ,
  • 李逸民 ,
  • 李静文 ,
  • 滕瑞敏 ,
  • 陈益 ,
  • 王雅慧 ,
  • 庄静
展开
  • 1.南京农业大学园艺学院,茶叶科学研究所,农业部华东地区园艺作物生物学与种质创制重点实验室,江苏 南京 210095;
    2.南京农业大学,作物遗传与种质创新国家重点实验室,江苏 南京 210095
杨妮,女,博士研究生,主要从事茶树分子生物学研究,2021204040@stu.njau.edu.cn。

收稿日期: 2021-11-11

  修回日期: 2021-12-23

  网络出版日期: 2022-04-15

基金资助

江苏省农业科技自主创新资金项目(CX(20)3114)、江苏高校优势学科建设项目(PAPD)

Effects of Exogenous 5-ALA on the Chlorophyll Synthesis and Fluorescence Characteristics and Gene Expression of Key Enzymes in Tea Plants under Drought Stress

  • YANG Ni ,
  • LI Yimin ,
  • Li Jingwen ,
  • TENG Ruimin ,
  • CHEN Yi ,
  • WANG Yahui ,
  • ZHUANG Jing
Expand
  • 1. Ministry of Agriculture Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Tea Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China;
    2. State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China

Received date: 2021-11-11

  Revised date: 2021-12-23

  Online published: 2022-04-15

摘要

为探究外源5-氨基乙酰丙酸(5-ALA)在茶树幼苗响应干旱胁迫时对茶树叶绿素合成和荧光特性的调控机理,以舒茶早为试验材料,PEG-6000模拟干旱胁迫环境,喷施5-ALA进行处理,检测茶树幼苗叶片的叶绿素a、叶绿素b和总叶绿素含量,进一步测定叶片叶绿素荧光参数及关键酶基因的表达。结果显示,外源5-ALA显著提高干旱胁迫下茶树叶片叶绿素a、叶绿素b、总叶绿素的含量,缓解了最大荧光(Fm)、PSⅡ实际光化学效率[Y()]、PSⅡ最大光化学量子产量(Fv/Fm)、光化学猝灭系数(qP)、PSⅡ潜在活性(Fv/Fo)、PSⅡ反应中心光合电子传递效率(Electron transfer rate,ETR)的下降,同时导致初始荧光(Fo)、非光化学猝灭系数(qN)升高。外源5-ALA能诱导干旱胁迫下茶树编码叶绿素合成(CsHEMA1CsHEME1CsLIN2)以及碳同化(CsSBPaseCsTK)相关酶基因的上调表达。研究表明,叶面喷施外源5-ALA能有效缓解干旱胁迫对茶树叶片叶绿素的降解及对PSⅡ反应中心的损伤,维持茶树叶片较高的光合活性,提高其光保护能力。

本文引用格式

杨妮 , 李逸民 , 李静文 , 滕瑞敏 , 陈益 , 王雅慧 , 庄静 . 外源5-ALA对干旱胁迫下茶树叶绿素合成和荧光特性及关键酶基因表达的影响[J]. 茶叶科学, 2022 , 42(2) : 187 -199 . DOI: 10.13305/j.cnki.jts.2022.02.010

Abstract

In order to study the regulation mechanism of exogenous 5-aminolevulinic acid (5-ALA) on the chlorophyll synthesis and fluorescence characteristics of tea plants in response to drought stress, tea cultivar 'Shuchazao' was used as the experimental material in this study. Under PEG-6000 simulated drought stress environment and 5-ALA spraying pretreatment, the contents of chlorophyll a, chlorophyll b and total chlorophyll in tea seedling leaves were detected, and the chlorophyll fluorescence parameters and the expressions of key enzyme genes in tea leaves were further determined. The results show that exogenous 5-ALA significantly increased the contents of chlorophyll a, chlorophyll b and total chlorophyll in tea leaves under drought stress. Exogenous 5-ALA alleviated the decreases of maximum fluorescence (Fm), actual photochemical efficiency of PSⅡ [Y()], maximum photochemical quantum yield of PSⅡ (Fv/Fm), photochemical quenching coefficient (qP), potential activity of PSⅡ(Fv/Fo), photosynthetic electron transfer rate (ETR) of PSⅡ reaction center, and the increases of initial fluorescence (Fo) and nonphotochemical quenching coefficient (qN). At the same time, exogenous 5-ALA induced the expressions of chlorophyll synthesis (CsHEMA1, CsHEME1, CsLIN2) and carbon assimilation-related enzymes (CsSBPase, CsTK) in tea plant under drought stress. The study demonstrates that spraying exogenous 5-ALA can effectively alleviate the degradation of chlorophyll and damage to PSⅡ reaction center of tea leaves under drought stress, maintain the higher photosynthetic activity, and improve the photoprotection ability of tea leaves.

参考文献

[1] 张士功, 刘国栋, 刘更另. 植物营养与作物抗旱性[J]. 植物学报, 2001, 18(1): 64-69.
Zhang S G, Liu G D, Liu G L.Plant nutrition and drought resistance of crops[J]. Chinese Bulletin of Botany, 2001, 18(1): 64-69.
[2] 张云华, 张宽朝, 阮龙, 等. 植物干旱适应的研究进展[J]. 安徽农业科学, 2005, 33(8): 1480-1481.
Zhang Y H, Zhang K C, Ruan L, et al.Research progress of plant adaptation to drought[J]. Journal of Anhui Agricultural Sciences, 2005, 33(8): 1480-1481.
[3] 戴云玲, 许春辉, 赵福洪, 等. 冷冻温度对冬小麦叶绿素a荧光诱导动力学和光化学活性的影响[J]. 生物物理学报, 1988, 4(2): 104-109, 169.
Dai Y L, Xu C H, Zhao F H, et al.The effects of freezing temperature on chlorophyll a fluorescence induction kinetics and photochemical activities of winter wheat[J]. Acta Biophysica Sinica, 1988, 4(2): 104-109, 169.
[4] 许大全, 张玉忠, 张荣铣. 植物光合作用的光抑制[J]. 植物生理学通讯, 1992, 28(4): 237-243.
Xu D Q, Zhang Y Z, Zhang R X.Photoinhibition of photosynthesis in plants[J]. Plant Physiology Communications, 1992, 28(4): 237-243.
[5] 王嘉楠, 李小艳, 魏石美, 等. 5-ALA对干旱胁迫下小麦幼苗光合作用及D1蛋白的调节作用[J]. 作物杂志, 2018(5): 121-126.
Wang J N, Li X Y, Wei S M, et al.Regulation of exogenous 5-aminolevulinicacid on photosynthesis and d1 protein of wheat seedlings under drought stress[J]. Crops, 2018(5): 121-126.
[6] 牛奎举. 外源5-氨基乙酰丙酸对干旱胁迫下草地早熟禾光合作用的调控机制[D]. 兰州: 甘肃农业大学, 2018.
Niu K J.The role of 5-aminolevulinic acid on regulation mechanism of photosynthesis in Kentucky bluegrass seedlings under drought stress [D]. Lanzhou: Gansu Agricultural University, 2018.
[7] 张晓宏, 郭刚, 王著龙, 等. 外源5-氨基乙酰丙酸对加工番茄叶光合色素及果实产量品质的影响[J]. 新疆农业科学, 2018, 55(8): 1436-1443.
Zhang X H, Guo G, Wang Z L, et al.Effect of foliar application 5-aminolevulinic acid on photosynthetic pigment and yield and quality of processing tomato in fields[J]. Xinjiang Agricultural Sciences, 2018, 55(8): 1436-1443.
[8] 刘晶晶, 孙军利, 赵宝龙, 等. 外源ALA对克瑞森无核葡萄果实品质的影响[J]. 新疆农业科学, 2019, 56(5): 817-825.
Liu J J, Sun J L, Zhao B L, et al.Effect of exogenous ALA on fruit quality of crimson seedless grape[J]. Xinjiang Agricultural Sciences, 2019, 56(5): 817-825.
[9] 张群珧. 外源5-氨基乙酰丙酸对假俭草抗旱性的影响[D]. 广州: 仲恺农业工程学院, 2019.
Zhang Q Y.Effects of exogenous 5-aminolevulinic acid on drought resistance of Eremochloa ophiuroides [D]. Guangzhou: Zhongkai University of Agriculture and Engineering, 2019.
[10] 闫永庆, 季绍旭, 王贺, 等. 外源ALA对盐胁迫下西伯利亚白刺光合作用的影响[J]. 东北农业大学学报, 2020, 51(8): 32-38.
Yan Y Q, Ji S X, Wang H, et al.Effect of exogenous ALA on photosynthesis of Nitraria sibirica Pall. during salt stress[J]. Journal of Northeast Agricultural University, 2020, 51(8): 32-38.
[11] 卢克欢, 郭双, 韦悦, 等. 外源性5-氨基乙酰丙酸对盐胁迫下颠茄生理特性及次生代谢产物含量的影响[J]. 西南大学学报(自然科学版), 2018, 40(9): 13-20.
Lu K H, Guo S, Wei Y, et al.Effect of exogenous 5-Aminolevulinic acid on physiological characteristics and secondary metabolite contents of Atropa belladonna L. seedings under NaCl stress[J]. Journal of Southwest University (Natural Science Edition), 2018, 40(9): 13-20.
[12] 汪良驹, 张志平, 王中华, 等. 5-氨基乙酰丙酸提高苹果等果品品质应用技术[Z]. (2012-08-10).
Wang L J, Zhang Z P, Wang Z H, et al. Application technology of 5-aminolevulinic acid to improve the quality of apple and other fruits [Z]. (2012-08-10).
[13] 赵雪. 外源5-氨基乙酰丙酸促进苹果叶片气孔开放机理[J]. 中国果业信息, 2014, 31(12): 65.
Zhao X.Mechanism of exogenous 5-aminolevulinic acid promoting stomatal opening in apple leaves[J]. China Fruit News, 2014, 31(12): 65.
[14] 范夕玲, 杨亚苓, 任健, 等. 外源5-氨基乙酰丙酸对盐胁迫下花椰菜幼苗生理特性的影响[J]. 天津农业科学, 2019, 25(12): 1-4.
Fan X L, Yang Y L, Ren J, et al.Effects of exogenous 5-aminolevulinic acid on physiological characteristics of cauliflower seedlings under salt stress[J]. Tianjin Agricultural Sciences, 2019, 25(12): 1-4.
[15] 邓硕真, 刘惠军, 王洪芹, 等. 外源5-氨基乙酰丙酸对干旱胁迫下黄瓜种子萌发及幼苗生长的影响[J]. 湖北农业科学, 2021, 60(3): 70-74, 78.
Deng S Z, Liu H J, Wang H Q, et al.Effects of exogenous 5-aminolevulinic acid on seed germination and seedling growth of cucumber under drought stress[J]. Hubei Agricultural Sciences, 2021, 60(3): 70-74, 78.
[16] 徐刚, 刘涛, 高文瑞, 等. 5-氨基乙酰丙酸对蔬菜生理作用的研究进展[J]. 金陵科技学院学报, 2010, 26(4): 52-57.
Xu G, Liu T, Gao W R, et al.Physiological effects of 5-aminolevulinic acid (ALA) on vegetables[J]. Journal of Jinling Institute of Technology, 2010, 26(4): 52-57.
[17] 向芬, 李维, 刘红艳, 等. 茶树叶绿素测定方法的比较研究[J]. 茶叶通讯, 2016, 43(4): 37-40.
Xiang F, Li W, Liu H Y, et al.Comparison methods of chlorophyll extraction in Camellia sinensis[J]. Journal of Tea Communication, 2016, 43(4): 37-40.
[18] 杨妮, 万绮雯, 李逸民, 等. 外源亚精胺对盐胁迫下茶树光合特性及关键酶基因表达的影响[J]. 园艺学报, 2022, 49(2): 378-394.
Yang N, Wan Q W, Li Y M, et al.Effects of exogenous spermidine on photosynthetic characteristics and gene expression of key enzymes under salt stress in tea plant[J]. Acta Horticulturae Sinica, 2022, 49(2): 378-394.
[19] Yu X L, Hu S, He C, et al.Chlorophyll metabolism in postharvest tea (Camellia sinensis L.) Leaves: variations in color values, chlorophyll derivatives, and gene expression levels under different withering treatments[J]. Journal of Agricultural and Food Chemistry, 2019, 67(38): 10624-10636.
[20] Wu Z J, Tian C, Jiang Q, et al.Selection of suitable reference genes for qRT-PCR normalization during leaf development and hormonal stimuli in tea plant (Camellia sinensis)[J]. Scientific Reports, 2016, 6: 19748. doi: 10.1038/srep19748.
[21] Livak K J, Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the method[J]. Methods, 2001, 25(4): 402-408.
[22] Katz J J, Norris J R, Shipman L L, et al.Chlorophyll function in the photosynthetic reaction center[J]. Annual Review of Biophysics & Bioengineering, 1978, 7(1): 393-434.
[23] Naeem M S, Jin Z L, Wan G L, et al.5-Aminolevulinic acid improves photosynthetic gas exchange capacity and ion uptake under salinity stress in oilseed rape (Brassica napus L.)[J]. Plant and Soil, 2010, 332: 405-415.
[24] Memon S A, Hou X, Wang L, et al.Promotive effect of 5-aminolevulinic acid on chlorophyll, antioxidative enzymes and photosynthesis of Pakchoi (Brassica campestris ssp. chinensis var. communis Tsen et Lee)[J]. Acta Physiol Plant, 2009, 31: 51. doi: 10.1007/s11738-008-0198-7.
[25] Liu L, Nguyen N T, Ueda A, et al.Effects of 5-aminolevulinic acid on Swiss chard (Beta vulgaris L. subsp. cicla) seedling growth under saline conditions[J]. Plant Growth Regulation, 2014, 74(3): 219-228.
[26] Karina B B, María L T, Alcira B, et al.The role of 5-aminolevulinic acid in the response to cold stress in soybean plants[J]. Phytochemistry, 2010, 71(17/18): 2038-2045.
[27] Liang J W, Wei B J, Bao J H.Promotion of 5-aminolevulinic acid on photosynthesis of melon (Cucumis melo) seedlings under low light and chilling stress conditions[J]. Physiologia Plantarum, 2010, 121(2): 258-264.
[28] 符姿. 外源H2S对干旱胁迫下茶树种子萌发及幼苗生理特性的影响[D]. 合肥: 安徽农业大学, 2018.
Fu Z.Effects of exogenous hydrogen sulfide on seeds germination and seedlings physiological characteristics of tea (Camellia sinensis) under drought stress [D]. Hefei: Anhui Agricultural University, 2018.
[29] Neisiani F F, Sanavy S A M M, Faezeh G, et al. Effect of foliar application of pyridoxine on antioxidant enzyme activity, proline accumulation and lipid peroxidation of maize (Zea mays L.) under water deficit[J]. Not Bot Horti Agrobo, 2009, 37(1): 116-121.
[30] Song J X, Anjum S A, Zong X F, et al.Combined foliar application of nutrients and 5-aminolevulinic acid (ALA) improved drought tolerance in Leymus chinensis by modulating its morpho-physiological characteristics[J]. Crop and Pasture Science, 2017, 68(5): 474-482.
[31] 鲁松. 叶绿素荧光动力学在植物抗逆性研究中的应用[J]. 四川林业科技, 2013, 34(4): 69-71.
Lu S.Application of chlorophyll fluorescence kinetics in researches on plant stress resistance[J]. Journal of Sichuan Forestry Science and Technology, 2013, 34(4): 69-71.
[32] 刘志梅, 蒋文伟, 杨广远, 等. 干旱胁迫对3种金银花叶绿素荧光参数的影响[J]. 浙江农林大学学报, 2012, 29(4): 533-539.
Liu Z M, Jiang W W, Yang G Y, et al.Chlorophyll fluorescence parameters under drought stress in three plants of Lonicera[J]. Journal of Zhejiang A & F University, 2012, 29(4): 533-539.
[33] 张春平, 周慧, 何平, 等. 外源5-氨基乙酰丙酸对盐胁迫下黄连幼苗光合参数及其叶绿素荧光特性的影响[J]. 西北植物学报, 2014, 34(12): 2515-2524.
Zhang C P, Zhou H, He P, et al.Effect of exogenous 5-aminolevulinic acid on photosynthesis and chlorophyll fluorescence characteristic of Coptis chinensis Franch. seedlings under NaCl stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(12): 2515-2524.
[34] 张洁, 丁志强, 李俊红, 等. 水肥对大豆叶绿素荧光动力学参数及其产量的影响[J]. 土壤与作物, 2013, 2(3): 122-126.
Zhang J, Ding Z Q, Li J H, et al.Effect of water and fertilizer coupling on chlorophyll fluorescence characters and yield in soybean[J]. Soils and Crops, 2013, 2(3): 122-126.
[35] 谢鑫, 王俊玲, 段立肖, 等. 光质对番茄叶片叶绿素荧光动力学参数的影响[J]. 河北农业大学学报, 2013, 36(6): 48-51, 88.
Xie X, Wang J L, Duan L X, et al.Effects of light quality on chlorophyll fluorescence kinetics parameters of tomato leaves[J]. Journal of Hebei Agricultural University, 2013, 36(6): 48-51, 88.
[36] 武海, 许大全. 珊瑚树叶片叶绿素荧光非光化学猝灭的日变化和季节变化[J]. 植物生理学报, 1997, 23(2): 145-150.
Wu H, Xu D Q.Diurnal and seasonal variations of non-photochemical quenching of chlorophyll fluorescence in sweet viburnum leaves[J]. Physiology and Molecular Biology of Plants, 1997, 23(2): 145-150.
[37] 徐盼盼. 红富士苹果虎皮病发生与叶绿素荧光参数关系的研究[J]. 现代农业科技, 2018(19): 267-269.
Xu P P.Study on the relationship between the occurrence of tiger skin disease and chlorophyll fluorescence parameters of apple[J]. Modern Agricultural Science and Technology, 2018(19): 267-269.
[38] 李治鑫, 李鑫, 范利超, 等. 高温胁迫对茶树叶片光合系统的影响[J]. 茶叶科学, 2015, 35(5): 415-422.
Li Z X, Li X, Fan L C, et al.Effect of heat stress on the photosynthesis system of tea leaves[J]. Journal of Tea Science, 2015, 35(5): 415-422.
[39] 赵丽英, 邓西平, 山仑. 渗透胁迫对小麦幼苗叶绿素荧光参数的影响[J]. 应用生态学报, 2005, 16(7): 1261-1264.
Zhao L P, Deng X P, Shan L.Effects of osmotic stress on chlorophyll fluorescence parameters of wheat seedling[J]. Chinese Journal of Applied Ecology, 2005, 16(7): 1261-1264.
[40] 邓哲. 5-ALA对太行红豆杉和南方红豆杉生长,光合及黄酮和多糖影响的比较研究[D]. 新乡: 河南科技学院, 2020.
Deng Z.Comparative study on the effects of 5-ala on growth, photosynthesis, flavonoids and polysaccharides of Taihang taxus and taxus chinensis [D]. Xinxiang: Henan Institute of Science and Technology, 2020.
[41] 康博文, 李文华, 刘建军, 等. ALA对红掌叶片光合作用及叶绿素荧光参数的影响[J]. 西北农林科技大学学报(自然科学版), 2009, 37(4): 97-102.
Kang B W, Li W H, Liu J J, et al.Effects of ALA treatment on photosynthetic and chlorophyII fluorescence dynamics of Anthurium andraeanum[J]. Journal of Northwest A & F University (Natural Science Edition), 2009, 37(4): 97-102.
[42] 李晓梅, 盛积贵. 干旱和复水对2种辣椒叶绿素荧光参数的影响[J]. 西南农业学报, 2016, 29(11): 2567-2572.
Li X M, Sheng J G.Effect of drought stress and rehydration on chlorophyll fluorescence characteristics of two species of capsicum[J]. Southwest China Journal of Agricultural Sciences, 2016, 29(11): 2567-2572.
[43] Ramalho J C, Zlatev Z S, Leitão A E, et al.Moderate water stress causes different stomatal and non-stomatal changes in the photosynthetic functioning of Phaseolus vulgaris L. genotypes[J]. Plant Biology, 2014, 16(1): 133-146.
[44] Lu C, Qiu N, Wang B, et al.Salinity treatment shows no effects on photosystemII photochemistry, but increases the resistance of photosystem II to heat stress in halophyte Suaeda salsa[J]. Journal of Experimental Botany, 2003(383): 851-860.
[45] 张玉玉, 王进鑫, 马戌, 等. 土壤干旱及复水对侧柏叶绿素荧光参数的影响[J]. 水土保持研究, 2021, 28(2): 242-247, 255.
Zhang Y Y, Wang J X, Ma X, et al.Effects of drought and rewatering on chlorophyll fluorescence parameters of Platycladus orientalis[J]. Research of Soil and Water Conservation, 2021, 28(2): 242-247, 255.
[46] 未晓巍, 张祖衔, 谈韫, 等. 玉米毛状根再生植株光系统Ⅱ对干旱胁迫和复水处理的不同响应[J]. 吉林师范大学学报(自然科学版), 2020, 41(4): 86-92.
Wei X W, Zhang Z X, Tan Y, et al.Response of photosystem II of maize regenerative plants from hairy root under drought stress and re-watering[J]. Journal of Jilin Normal University (Natural Science Edition), 2020, 41(4): 86-92.
[47] 李佳佳, 于旭东, 蔡泽坪, 等. 高等植物叶绿素生物合成研究进展[J]. 分子植物育种, 2019, 17(18): 6013-6019.
Li J J, Yu X D, Cai Z P, et al.An overview of chlorophyll biosynthesis in higher plants[J]. Molecular Plant Breeding, 2019, 17(18): 6013-6019.
[48] 王平荣, 张帆涛, 高家旭, 等. 高等植物叶绿素生物合成的研究进展[J]. 西北植物学报, 2009, 29(3): 629-636.
Wang P R, Zhang F T, Gao J X, et al.An overview of chlorophyll biosynthesis in higher plants[J]. Acta Botanica Boreali-Occidentalia Sinica, 2009, 29(3): 629-636.
[49] 何晓玲. 外源硒对NaCl胁迫下加工番茄幼苗光合碳同化的影响[D]. 石河子: 石河子大学, 2015.
He X L.Effect of exogenous Se on photosynthetic carbon assimilation in tomato seedlings under NaCl stress [D]. Shihezi: Shihezi University, 2015.
[50] Teige M, Melzer M, Süss K H.Purification, properties and in situ localization of the amphibolic enzymes D-ribulose 5-phosphate 3-epimerase and transketolase from spinach chloroplasts[J]. European Journal of Biochemistry, 2010, 252(2): 237-244.
[51] Raines C A.The Calvin cycle revisited[J]. Photosynthesis Research, 2003, 75(1): 1-10.
[52] Haake V, Zrenner R, Sonnewald U, et al.A moderate decrease of plastid aldolase activity inhibits photosynthesis, alters the levels of sugars and starch, and inhibits growth of potato plants[J]. Plant Journal, 1998, 14(2): 147-157.
[53] Henkes S, Sonnewald U, Badur R, et al.A small decrease of plastid transketolase activity in antisense tobacco transformants has dramatic effects on photosynthesis and phenylpropanoid metabolism[J]. The Plant Cell Online, 2001, 13(3): 535-551.
[54] Ma W, Wei L, Wang Q, et al.Increased activity of the non-regulated enzymes fructose-1,6-bisphosphate aldolase and triosephosphate isomerase in Anabaena sp. strain PCC 7120 increases photosynthetic yield[J]. Journal of Applied Phycology, 2007, 19(3): 207-213.
[55] 靳静晨, 马东媛, 靳永胜, 等. 烟草转酮醇酶基因(NtTK)的克隆与表达[J]. 河南农业大学学报, 2008, 149(5): 479-482.
Jin J C, Ma D Y, Jin Y S, et al.Cloning and expression of transketolase gene (NtTK) in tobacco[J]. Journal of Henan Agricultural University, 2008, 149(5): 479-482.
文章导航

/