茶叶科学 ›› 2022, Vol. 42 ›› Issue (2): 187-199.doi: 10.13305/j.cnki.jts.2022.02.010
杨妮1, 李逸民1, 李静文1, 滕瑞敏1, 陈益1, 王雅慧2, 庄静1,*
收稿日期:
2021-11-11
修回日期:
2021-12-23
出版日期:
2022-04-15
发布日期:
2022-04-15
通讯作者:
* zhuangjing@njau.edu.cn
作者简介:
杨妮,女,博士研究生,主要从事茶树分子生物学研究,2021204040@stu.njau.edu.cn。
基金资助:
YANG Ni1, LI Yimin1, Li Jingwen1, TENG Ruimin1, CHEN Yi1, WANG Yahui2, ZHUANG Jing1,*
Received:
2021-11-11
Revised:
2021-12-23
Online:
2022-04-15
Published:
2022-04-15
摘要: 为探究外源5-氨基乙酰丙酸(5-ALA)在茶树幼苗响应干旱胁迫时对茶树叶绿素合成和荧光特性的调控机理,以舒茶早为试验材料,PEG-6000模拟干旱胁迫环境,喷施5-ALA进行处理,检测茶树幼苗叶片的叶绿素a、叶绿素b和总叶绿素含量,进一步测定叶片叶绿素荧光参数及关键酶基因的表达。结果显示,外源5-ALA显著提高干旱胁迫下茶树叶片叶绿素a、叶绿素b、总叶绿素的含量,缓解了最大荧光(Fm)、PSⅡ实际光化学效率[Y(Ⅱ)]、PSⅡ最大光化学量子产量(Fv/Fm)、光化学猝灭系数(qP)、PSⅡ潜在活性(Fv/Fo)、PSⅡ反应中心光合电子传递效率(Electron transfer rate,ETR)的下降,同时导致初始荧光(Fo)、非光化学猝灭系数(qN)升高。外源5-ALA能诱导干旱胁迫下茶树编码叶绿素合成(CsHEMA1、CsHEME1、CsLIN2)以及碳同化(CsSBPase、CsTK)相关酶基因的上调表达。研究表明,叶面喷施外源5-ALA能有效缓解干旱胁迫对茶树叶片叶绿素的降解及对PSⅡ反应中心的损伤,维持茶树叶片较高的光合活性,提高其光保护能力。
中图分类号:
杨妮, 李逸民, 李静文, 滕瑞敏, 陈益, 王雅慧, 庄静. 外源5-ALA对干旱胁迫下茶树叶绿素合成和荧光特性及关键酶基因表达的影响[J]. 茶叶科学, 2022, 42(2): 187-199. doi: 10.13305/j.cnki.jts.2022.02.010.
YANG Ni, LI Yimin, Li Jingwen, TENG Ruimin, CHEN Yi, WANG Yahui, ZHUANG Jing. Effects of Exogenous 5-ALA on the Chlorophyll Synthesis and Fluorescence Characteristics and Gene Expression of Key Enzymes in Tea Plants under Drought Stress[J]. Journal of Tea Science, 2022, 42(2): 187-199. doi: 10.13305/j.cnki.jts.2022.02.010.
[1] 张士功, 刘国栋, 刘更另. 植物营养与作物抗旱性[J]. 植物学报, 2001, 18(1): 64-69. Zhang S G, Liu G D, Liu G L.Plant nutrition and drought resistance of crops[J]. Chinese Bulletin of Botany, 2001, 18(1): 64-69. [2] 张云华, 张宽朝, 阮龙, 等. 植物干旱适应的研究进展[J]. 安徽农业科学, 2005, 33(8): 1480-1481. Zhang Y H, Zhang K C, Ruan L, et al.Research progress of plant adaptation to drought[J]. Journal of Anhui Agricultural Sciences, 2005, 33(8): 1480-1481. [3] 戴云玲, 许春辉, 赵福洪, 等. 冷冻温度对冬小麦叶绿素a荧光诱导动力学和光化学活性的影响[J]. 生物物理学报, 1988, 4(2): 104-109, 169. Dai Y L, Xu C H, Zhao F H, et al.The effects of freezing temperature on chlorophyll a fluorescence induction kinetics and photochemical activities of winter wheat[J]. Acta Biophysica Sinica, 1988, 4(2): 104-109, 169. [4] 许大全, 张玉忠, 张荣铣. 植物光合作用的光抑制[J]. 植物生理学通讯, 1992, 28(4): 237-243. Xu D Q, Zhang Y Z, Zhang R X.Photoinhibition of photosynthesis in plants[J]. Plant Physiology Communications, 1992, 28(4): 237-243. [5] 王嘉楠, 李小艳, 魏石美, 等. 5-ALA对干旱胁迫下小麦幼苗光合作用及D1蛋白的调节作用[J]. 作物杂志, 2018(5): 121-126. Wang J N, Li X Y, Wei S M, et al.Regulation of exogenous 5-aminolevulinicacid on photosynthesis and d1 protein of wheat seedlings under drought stress[J]. Crops, 2018(5): 121-126. [6] 牛奎举. 外源5-氨基乙酰丙酸对干旱胁迫下草地早熟禾光合作用的调控机制[D]. 兰州: 甘肃农业大学, 2018. Niu K J.The role of 5-aminolevulinic acid on regulation mechanism of photosynthesis in Kentucky bluegrass seedlings under drought stress [D]. Lanzhou: Gansu Agricultural University, 2018. [7] 张晓宏, 郭刚, 王著龙, 等. 外源5-氨基乙酰丙酸对加工番茄叶光合色素及果实产量品质的影响[J]. 新疆农业科学, 2018, 55(8): 1436-1443. Zhang X H, Guo G, Wang Z L, et al.Effect of foliar application 5-aminolevulinic acid on photosynthetic pigment and yield and quality of processing tomato in fields[J]. Xinjiang Agricultural Sciences, 2018, 55(8): 1436-1443. [8] 刘晶晶, 孙军利, 赵宝龙, 等. 外源ALA对克瑞森无核葡萄果实品质的影响[J]. 新疆农业科学, 2019, 56(5): 817-825. Liu J J, Sun J L, Zhao B L, et al.Effect of exogenous ALA on fruit quality of crimson seedless grape[J]. Xinjiang Agricultural Sciences, 2019, 56(5): 817-825. [9] 张群珧. 外源5-氨基乙酰丙酸对假俭草抗旱性的影响[D]. 广州: 仲恺农业工程学院, 2019. Zhang Q Y.Effects of exogenous 5-aminolevulinic acid on drought resistance of [10] 闫永庆, 季绍旭, 王贺, 等. 外源ALA对盐胁迫下西伯利亚白刺光合作用的影响[J]. 东北农业大学学报, 2020, 51(8): 32-38. Yan Y Q, Ji S X, Wang H, et al.Effect of exogenous ALA on photosynthesis of [11] 卢克欢, 郭双, 韦悦, 等. 外源性5-氨基乙酰丙酸对盐胁迫下颠茄生理特性及次生代谢产物含量的影响[J]. 西南大学学报(自然科学版), 2018, 40(9): 13-20. Lu K H, Guo S, Wei Y, et al.Effect of exogenous 5-Aminolevulinic acid on physiological characteristics and secondary metabolite contents of [12] 汪良驹, 张志平, 王中华, 等. 5-氨基乙酰丙酸提高苹果等果品品质应用技术[Z]. (2012-08-10). Wang L J, Zhang Z P, Wang Z H, et al. Application technology of 5-aminolevulinic acid to improve the quality of apple and other fruits [Z]. (2012-08-10). [13] 赵雪. 外源5-氨基乙酰丙酸促进苹果叶片气孔开放机理[J]. 中国果业信息, 2014, 31(12): 65. Zhao X.Mechanism of exogenous 5-aminolevulinic acid promoting stomatal opening in apple leaves[J]. China Fruit News, 2014, 31(12): 65. [14] 范夕玲, 杨亚苓, 任健, 等. 外源5-氨基乙酰丙酸对盐胁迫下花椰菜幼苗生理特性的影响[J]. 天津农业科学, 2019, 25(12): 1-4. Fan X L, Yang Y L, Ren J, et al.Effects of exogenous 5-aminolevulinic acid on physiological characteristics of cauliflower seedlings under salt stress[J]. Tianjin Agricultural Sciences, 2019, 25(12): 1-4. [15] 邓硕真, 刘惠军, 王洪芹, 等. 外源5-氨基乙酰丙酸对干旱胁迫下黄瓜种子萌发及幼苗生长的影响[J]. 湖北农业科学, 2021, 60(3): 70-74, 78. Deng S Z, Liu H J, Wang H Q, et al.Effects of exogenous 5-aminolevulinic acid on seed germination and seedling growth of cucumber under drought stress[J]. Hubei Agricultural Sciences, 2021, 60(3): 70-74, 78. [16] 徐刚, 刘涛, 高文瑞, 等. 5-氨基乙酰丙酸对蔬菜生理作用的研究进展[J]. 金陵科技学院学报, 2010, 26(4): 52-57. Xu G, Liu T, Gao W R, et al.Physiological effects of 5-aminolevulinic acid (ALA) on vegetables[J]. Journal of Jinling Institute of Technology, 2010, 26(4): 52-57. [17] 向芬, 李维, 刘红艳, 等. 茶树叶绿素测定方法的比较研究[J]. 茶叶通讯, 2016, 43(4): 37-40. Xiang F, Li W, Liu H Y, et al.Comparison methods of chlorophyll extraction in [18] 杨妮, 万绮雯, 李逸民, 等. 外源亚精胺对盐胁迫下茶树光合特性及关键酶基因表达的影响[J]. 园艺学报, 2022, 49(2): 378-394. Yang N, Wan Q W, Li Y M, et al.Effects of exogenous spermidine on photosynthetic characteristics and gene expression of key enzymes under salt stress in tea plant[J]. Acta Horticulturae Sinica, 2022, 49(2): 378-394. [19] Yu X L, Hu S, He C, et al.Chlorophyll metabolism in postharvest tea ( [20] Wu Z J, Tian C, Jiang Q, et al.Selection of suitable reference genes for qRT-PCR normalization during leaf development and hormonal stimuli in tea plant ( [21] Livak K J, Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the method[J]. Methods, 2001, 25(4): 402-408. [22] Katz J J, Norris J R, Shipman L L, et al.Chlorophyll function in the photosynthetic reaction center[J]. Annual Review of Biophysics & Bioengineering, 1978, 7(1): 393-434. [23] Naeem M S, Jin Z L, Wan G L, et al.5-Aminolevulinic acid improves photosynthetic gas exchange capacity and ion uptake under salinity stress in oilseed rape ( [24] Memon S A, Hou X, Wang L, et al.Promotive effect of 5-aminolevulinic acid on chlorophyll, antioxidative enzymes and photosynthesis of Pakchoi ( [25] Liu L, Nguyen N T, Ueda A, et al.Effects of 5-aminolevulinic acid on Swiss chard ( [26] Karina B B, María L T, Alcira B, et al.The role of 5-aminolevulinic acid in the response to cold stress in soybean plants[J]. Phytochemistry, 2010, 71(17/18): 2038-2045. [27] Liang J W, Wei B J, Bao J H.Promotion of 5-aminolevulinic acid on photosynthesis of melon ( [28] 符姿. 外源H2S对干旱胁迫下茶树种子萌发及幼苗生理特性的影响[D]. 合肥: 安徽农业大学, 2018. Fu Z.Effects of exogenous hydrogen sulfide on seeds germination and seedlings physiological characteristics of tea ( [29] Neisiani F F, Sanavy S A M M, Faezeh G, et al. Effect of foliar application of pyridoxine on antioxidant enzyme activity, proline accumulation and lipid peroxidation of maize ( [30] Song J X, Anjum S A, Zong X F, et al.Combined foliar application of nutrients and 5-aminolevulinic acid (ALA) improved drought tolerance in [31] 鲁松. 叶绿素荧光动力学在植物抗逆性研究中的应用[J]. 四川林业科技, 2013, 34(4): 69-71. Lu S.Application of chlorophyll fluorescence kinetics in researches on plant stress resistance[J]. Journal of Sichuan Forestry Science and Technology, 2013, 34(4): 69-71. [32] 刘志梅, 蒋文伟, 杨广远, 等. 干旱胁迫对3种金银花叶绿素荧光参数的影响[J]. 浙江农林大学学报, 2012, 29(4): 533-539. Liu Z M, Jiang W W, Yang G Y, et al.Chlorophyll fluorescence parameters under drought stress in three plants of [33] 张春平, 周慧, 何平, 等. 外源5-氨基乙酰丙酸对盐胁迫下黄连幼苗光合参数及其叶绿素荧光特性的影响[J]. 西北植物学报, 2014, 34(12): 2515-2524. Zhang C P, Zhou H, He P, et al.Effect of exogenous 5-aminolevulinic acid on photosynthesis and chlorophyll fluorescence characteristic of [34] 张洁, 丁志强, 李俊红, 等. 水肥对大豆叶绿素荧光动力学参数及其产量的影响[J]. 土壤与作物, 2013, 2(3): 122-126. Zhang J, Ding Z Q, Li J H, et al.Effect of water and fertilizer coupling on chlorophyll fluorescence characters and yield in soybean[J]. Soils and Crops, 2013, 2(3): 122-126. [35] 谢鑫, 王俊玲, 段立肖, 等. 光质对番茄叶片叶绿素荧光动力学参数的影响[J]. 河北农业大学学报, 2013, 36(6): 48-51, 88. Xie X, Wang J L, Duan L X, et al.Effects of light quality on chlorophyll fluorescence kinetics parameters of tomato leaves[J]. Journal of Hebei Agricultural University, 2013, 36(6): 48-51, 88. [36] 武海, 许大全. 珊瑚树叶片叶绿素荧光非光化学猝灭的日变化和季节变化[J]. 植物生理学报, 1997, 23(2): 145-150. Wu H, Xu D Q.Diurnal and seasonal variations of non-photochemical quenching of chlorophyll fluorescence in sweet viburnum leaves[J]. Physiology and Molecular Biology of Plants, 1997, 23(2): 145-150. [37] 徐盼盼. 红富士苹果虎皮病发生与叶绿素荧光参数关系的研究[J]. 现代农业科技, 2018(19): 267-269. Xu P P.Study on the relationship between the occurrence of tiger skin disease and chlorophyll fluorescence parameters of apple[J]. Modern Agricultural Science and Technology, 2018(19): 267-269. [38] 李治鑫, 李鑫, 范利超, 等. 高温胁迫对茶树叶片光合系统的影响[J]. 茶叶科学, 2015, 35(5): 415-422. Li Z X, Li X, Fan L C, et al.Effect of heat stress on the photosynthesis system of tea leaves[J]. Journal of Tea Science, 2015, 35(5): 415-422. [39] 赵丽英, 邓西平, 山仑. 渗透胁迫对小麦幼苗叶绿素荧光参数的影响[J]. 应用生态学报, 2005, 16(7): 1261-1264. Zhao L P, Deng X P, Shan L.Effects of osmotic stress on chlorophyll fluorescence parameters of wheat seedling[J]. Chinese Journal of Applied Ecology, 2005, 16(7): 1261-1264. [40] 邓哲. 5-ALA对太行红豆杉和南方红豆杉生长,光合及黄酮和多糖影响的比较研究[D]. 新乡: 河南科技学院, 2020. Deng Z.Comparative study on the effects of 5-ala on growth, photosynthesis, flavonoids and polysaccharides of Taihang taxus and taxus chinensis [D]. Xinxiang: Henan Institute of Science and Technology, 2020. [41] 康博文, 李文华, 刘建军, 等. ALA对红掌叶片光合作用及叶绿素荧光参数的影响[J]. 西北农林科技大学学报(自然科学版), 2009, 37(4): 97-102. Kang B W, Li W H, Liu J J, et al.Effects of ALA treatment on photosynthetic and chlorophyII fluorescence dynamics of [42] 李晓梅, 盛积贵. 干旱和复水对2种辣椒叶绿素荧光参数的影响[J]. 西南农业学报, 2016, 29(11): 2567-2572. Li X M, Sheng J G.Effect of drought stress and rehydration on chlorophyll fluorescence characteristics of two species of capsicum[J]. Southwest China Journal of Agricultural Sciences, 2016, 29(11): 2567-2572. [43] Ramalho J C, Zlatev Z S, Leitão A E, et al.Moderate water stress causes different stomatal and non-stomatal changes in the photosynthetic functioning of [44] Lu C, Qiu N, Wang B, et al.Salinity treatment shows no effects on photosystemII photochemistry, but increases the resistance of photosystem II to heat stress in halophyte [45] 张玉玉, 王进鑫, 马戌, 等. 土壤干旱及复水对侧柏叶绿素荧光参数的影响[J]. 水土保持研究, 2021, 28(2): 242-247, 255. Zhang Y Y, Wang J X, Ma X, et al.Effects of drought and rewatering on chlorophyll fluorescence parameters of [46] 未晓巍, 张祖衔, 谈韫, 等. 玉米毛状根再生植株光系统Ⅱ对干旱胁迫和复水处理的不同响应[J]. 吉林师范大学学报(自然科学版), 2020, 41(4): 86-92. Wei X W, Zhang Z X, Tan Y, et al.Response of photosystem II of maize regenerative plants from hairy root under drought stress and re-watering[J]. Journal of Jilin Normal University (Natural Science Edition), 2020, 41(4): 86-92. [47] 李佳佳, 于旭东, 蔡泽坪, 等. 高等植物叶绿素生物合成研究进展[J]. 分子植物育种, 2019, 17(18): 6013-6019. Li J J, Yu X D, Cai Z P, et al.An overview of chlorophyll biosynthesis in higher plants[J]. Molecular Plant Breeding, 2019, 17(18): 6013-6019. [48] 王平荣, 张帆涛, 高家旭, 等. 高等植物叶绿素生物合成的研究进展[J]. 西北植物学报, 2009, 29(3): 629-636. Wang P R, Zhang F T, Gao J X, et al.An overview of chlorophyll biosynthesis in higher plants[J]. Acta Botanica Boreali-Occidentalia Sinica, 2009, 29(3): 629-636. [49] 何晓玲. 外源硒对NaCl胁迫下加工番茄幼苗光合碳同化的影响[D]. 石河子: 石河子大学, 2015. He X L.Effect of exogenous Se on photosynthetic carbon assimilation in tomato seedlings under NaCl stress [D]. Shihezi: Shihezi University, 2015. [50] Teige M, Melzer M, Süss K H.Purification, properties and in situ localization of the amphibolic enzymes D-ribulose 5-phosphate 3-epimerase and transketolase from spinach chloroplasts[J]. European Journal of Biochemistry, 2010, 252(2): 237-244. [51] Raines C A.The Calvin cycle revisited[J]. Photosynthesis Research, 2003, 75(1): 1-10. [52] Haake V, Zrenner R, Sonnewald U, et al.A moderate decrease of plastid aldolase activity inhibits photosynthesis, alters the levels of sugars and starch, and inhibits growth of potato plants[J]. Plant Journal, 1998, 14(2): 147-157. [53] Henkes S, Sonnewald U, Badur R, et al.A small decrease of plastid transketolase activity in antisense tobacco transformants has dramatic effects on photosynthesis and phenylpropanoid metabolism[J]. The Plant Cell Online, 2001, 13(3): 535-551. [54] Ma W, Wei L, Wang Q, et al.Increased activity of the non-regulated enzymes fructose-1,6-bisphosphate aldolase and triosephosphate isomerase in [55] 靳静晨, 马东媛, 靳永胜, 等. 烟草转酮醇酶基因( Jin J C, Ma D Y, Jin Y S, et al.Cloning and expression of transketolase gene ( |
[1] | 王留彬, 黄丽蕴, 滕翠琴, 吴立赟, 成浩, 于翠平, 王丽鸳. 梧州茶树种质资源的遗传多样性及亲缘关系分析[J]. 茶叶科学, 2022, 42(5): 601-609. |
[2] | 周汉琛, 杨霁虹, 徐玉婕, 吴琼, 雷攀登. 香叶醇生物合成相关基因NUDX1的进化分析[J]. 茶叶科学, 2022, 42(5): 638-648. |
[3] | 陈琪予, 马建强, 陈杰丹, 陈亮. 利用图像特征分析茶树成熟叶表型的遗传多样性[J]. 茶叶科学, 2022, 42(5): 649-660. |
[4] | 孙悦, 吴俊, 韦朝领, 刘梦月, 高晨曦, 张灵枝, 曹士先, 余顺甜, 金珊, 孙威江. 抗小贯松村叶蝉和茶棍蓟马的茶树种质筛选及其抗性相关因素分析[J]. 茶叶科学, 2022, 42(5): 689-704. |
[5] | 王玉源, 刘任坚, 刘少群, 舒灿伟, 孙彬妹, 郑鹏. 茶树R2R3-MYB转录因子CsTT2表达分析及功能初步鉴定[J]. 茶叶科学, 2022, 42(4): 463-476. |
[6] | 刘建军, 张金玉, 彭叶, 刘晓博, 杨云, 黄涛, 温贝贝, 李美凤. 不同光质摊青对夏秋茶树鲜叶挥发性物质及其绿茶品质影响研究[J]. 茶叶科学, 2022, 42(4): 500-514. |
[7] | 邢安琪, 武子辰, 徐晓寒, 孙怡, 王艮梅, 王玉花. 茶树富集氟的特点及其机制的研究进展[J]. 茶叶科学, 2022, 42(3): 301-315. |
[8] | 王涛, 王艺清, 漆思雨, 周喆, 陈志丹, 孙威江. 茶树CLH基因家族的鉴定与转录调控研究及其在白化茶树中的表达分析[J]. 茶叶科学, 2022, 42(3): 331-346. |
[9] | 刘任坚, 王玉源, 刘少群, 舒灿伟, 孙彬妹, 郑鹏. 茶树CsbHLH024和CsbHLH133转录因子功能鉴定[J]. 茶叶科学, 2022, 42(3): 347-357. |
[10] | 欧阳珂, 张成, 廖雪利, 坤吉瑞, 童华荣. 基于感官组学分析玉米香型南川大茶树工夫红茶特征香气[J]. 茶叶科学, 2022, 42(3): 397-408. |
[11] | 刘富浩, 范延艮, 王域, 孟凡月, 张丽霞. 茶树黄金芽CsHIPP26.1蛋白螯合离子的筛选与鉴定[J]. 茶叶科学, 2022, 42(2): 179-186. |
[12] | 疏再发, 郑生宏, 邵静娜, 周慧娟, 吉庆勇, 刘瑜, 何卫中, 王丽鸳. 不同茶树品种(系)对减半施肥的响应研究[J]. 茶叶科学, 2022, 42(2): 277-289. |
[13] | 陈潇敏, 赵峰, 王淑燕, 邵淑贤, 吴文晞, 林钦, 王鹏杰, 叶乃兴. 福建野生茶树资源嘌呤生物碱构成评价及特异资源筛选[J]. 茶叶科学, 2022, 42(1): 18-28. |
[14] | 刘庆帅, 璩馥榕, 魏梦园, 钟红, 王熠, 陈亮, 金基强. 基于UPLC技术解析金萱×紫娟F1分离群体代谢物的遗传变异[J]. 茶叶科学, 2022, 42(1): 29-40. |
[15] | 朱咏珊, 罗晓欣, 梁浩然, 陈正桐, 刘成, 曹凯, 刘少群, 周而勋, 舒灿伟, 郑鹏. 一株茶树根际细菌的鉴定与生防效果研究[J]. 茶叶科学, 2022, 42(1): 87-100. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|