欢迎访问《茶叶科学》,今天是
研究报告

茶树CLH基因家族的鉴定与转录调控研究及其在白化茶树中的表达分析

  • 王涛 ,
  • 王艺清 ,
  • 漆思雨 ,
  • 周喆 ,
  • 陈志丹 ,
  • 孙威江
展开
  • 1.福建农林大学园艺学院,福建 福州 350002;
    2.福建农林大学安溪茶学院,福建 泉州 362400;
    3.福建省茶产业工程技术研究中心,福建 福州 350002;
    4.海峡两岸特色作物安全生产省部共建协同创新中心,福建 福州 350002;
    5.福建省茶产业技术开发基地,福建 福州 350002
王涛,男,硕士研究生,主要从事茶树栽培育种与生物技术方面研究。

收稿日期: 2021-12-14

  修回日期: 2022-01-24

  网络出版日期: 2022-06-17

基金资助

福建省高校产学合作项目(2019N5007)、国家自然科学基金(31770732)、国家重点研发计划(2019YFD1001601)、福建农林大学“双一流”建设科技创新能力提升培育计划(KSYLC005)、福建张天福茶叶发展基金会科技创新基金(FJZTF01)

Identification and Transcriptional Regulation of CLH Gene Family and Expression Analysis in Albino Tea Plants (Camellia sinensis)

  • WANG Tao ,
  • WANG Yiqing ,
  • QI Siyu ,
  • ZHOU Zhe ,
  • CHEN Zhidan ,
  • SUN Weijiang
Expand
  • 1. College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
    2. Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou 362400, China;
    3. Engineering Technology and Research Center of Fujian Tea Industry, Fuzhou 350002, China;
    4. Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
    5. Tea Industry Technology Development Base of Fujian Province, Fuzhou 350002, China

Received date: 2021-12-14

  Revised date: 2022-01-24

  Online published: 2022-06-17

摘要

叶绿素酶(Chlorophyllase,CLH)是叶绿素降解过程中的关键酶,将叶绿素a脱去植醇,形成脱植基叶绿素a。以白化茶树白鸡冠新梢叶片为材料,克隆获得3条CsCLHs基因cDNA全长序列,并进行生物信息学分析。结果表明,3条CsCLHs基因分布于2个亚家族,其蛋白质编码区(Coding sequence,CDs)长度为894~975 bp,编码氨基酸个数为297~324,蛋白质分子量为31.99~34.91 kDa,等电点为4.89~7.61,不稳定系数为38.94~48.24,其中CsCLH1.1和CsCLH1.2为不稳定蛋白,CsCLH2为稳定蛋白。Cell-PLoc亚细胞定位预测结果表明,3个CsCLHs蛋白均定位于叶绿体;而WolfPsort亚细胞定位预测结果显示,CsCLH1.1和CsCLH1.2定位于细胞质,CsCLH2定位于叶绿体。遮阴和恢复光照处理下的qRT-PCR结果显示,遮阴抑制白鸡冠叶片CsCLHs的表达,光照诱导白鸡冠叶片CsCLHs的表达。不同品种中CsCLHs表达模式分析表明,CsCLH1s在白化叶中高表达。另外,酵母单杂交结果表明,CsCDF5可以与CsCLH1.1CsCLH2启动子结合。综上所述,CsCLHs在白化茶树叶片中可能参与叶绿素降解,在叶片白化过程中发挥重要作用,结果可为进一步探究茶树CLH基因家族的功能及茶树叶片白化机理提供参考。

本文引用格式

王涛 , 王艺清 , 漆思雨 , 周喆 , 陈志丹 , 孙威江 . 茶树CLH基因家族的鉴定与转录调控研究及其在白化茶树中的表达分析[J]. 茶叶科学, 2022 , 42(3) : 331 -346 . DOI: 10.13305/j.cnki.jts.2022.03.003

Abstract

Chlorophyllase (CLH) is the key enzyme in the degradation of chlorophyll, stripping its phytol to form dephytolithochlorophyll a. The full-length cDNA sequences of three CsCLHs genes were obtained from the second leaves of albino tea cultivar ‘Baijiguan', and bioinformatics analysis was performed. The results show that the three CsCLH genes could be divided into two subfamilies. The full length of CsCLHs was 894-975 bp, encoding 297-324 amino acids. The protein molecular weights were 31.99-34.91 kDa. The isoelectric points were 4.89-7.61, and the instability coefficients were 38.94-48.24. CsCLH1.1 and CsCLH1.2 were unstable proteins, while CsCLH2 was a stable protein. The subcellular localization prediction results of Cell Ploc show that three CsCLH proteins were located in chloroplast, while the results of Wolf Psort show that CsCLH1.1 and CsCLH1.2 were located in cytoplasm and CsCLH2 was located in chloroplast. The qRT-PCR results on the ‘Baijiguan' leaves indicated that expressions of CsCLHs were inhibited by shading treatment and light induced CsCLHs' expressions. Expression pattern analysis of CsCLHs shows that CsCLH1s were highly expressed in the albino cultivars. In addition, it was identified that CsCDF5 could bind to the CsCLH1.1 and CsCLH2 promoters according to the yeast one hybrid system. In conclusion, CsCLHs in albino tea leaves might be involved in chlorophyll degradation and play an important role in the process of albino leaf, which provided a reference for further investigation in the function of the CLH gene family and the albinism of leaves in tea plants.

参考文献

[1] Zhong X M, Sun S F, Li F H, et al.Photosynthesis of a yellow-green mutant line in maize[J]. Photosynthetica, 2015, 53(4): 499-505.
[2] Li W X, Yang S B, Lu Z G, et al.Cytological, physiological, and transcriptomic analyses of golden leaf coloration in Ginkgo biloba L[J]. Horticulture Research, 2018, 5: 12. doi: 10.1038/s41438-018-0015-4.
[3] Gang H X, Liu G F, Chen S, et al.Physiological and transcriptome analysis of a yellow-green leaf mutant in birch (Betula platyphylla × B. Pendula)[J]. Forests, 2019, 10(2): 120. doi: 10.3390/f10020120.
[4] Slattery R A, VanLoocke A, Bernacchi C J, et al. Photosynthesis, light use efficiency, and yield of reduced-chlorophyll soybean mutants in field conditions[J]. Frontiers in Plant Science, 2017, 8: 549. doi: 10.3389/fpls.2017.00549.
[5] 元世昌, 黄亚伟, 王若兰, 等. 优质稻黄变期间营养组分的变化规律研究[J]. 食品科技, 2019, 44(6): 156-161.
Yuan S C, Huang Y W, Wang R L, et al.Changes of nutrient components during high quality rice yellowing[J]. Food Science and Technology, 2019, 44(6): 156-161.
[6] Ma L L, Liu Y L, Cao D, et al.Quality constituents of high amino acid content tea cultivars with various leaf colors[J]. Turkish Journal of Agriculture and Forestry, 2018, 42(6): 383-392.
[7] Shin Y H, Yang R, Shi Y L, et al.Light-sensitive albino tea plants and their characterization[J]. Hortscience, 2018, 53(2): 144-147.
[8] 范延艮, 赵秀秀, 王翰悦, 等. 黄金芽不同色泽叶片生理特性研究[J]. 茶叶科学, 2019, 39(5): 530-536.
Fan Y G, Zhao X X, Wang H Y, et al.Study on physiological charateristics of leaves with different colors of ‘Huangjinya'[J]. Jounal of Tea Science, 2019, 39(5): 530-536.
[9] 吴全金. ‘白鸡冠'茶树响应光调控的基因差异及理化特征分析[D]. 福州: 福建农林大学, 2015.
Wu Q J.Gene differential analysis and physicochemical characteristics of Camellia sinensis cv. Baijiguan in response to light [D]. Fuzhou: Fujian Agriculture and Forestry University, 2015.
[10] Li N, Yang Y P, Ye J H, et al.Effects of sunlight on gene expression and chemical composition of light-sensitive albino tea plant[J]. Plant Growth Regulation, 2016, 78(2): 253-262.
[11] 周喆, 陈志丹, 吴全金, 等. 白鸡冠茶树CsPPH基因全长cDNA克隆与表达分析[J]. 茶叶科学, 2020, 40(1): 43-54.
Zhou Z, Chen Z D, Wu Q J, et al.Cloning and expression analysis of CsPPH gene in tea plant (Camellia sisnensis)[J]. Jounal of Tea Science, 2020, 40(1): 43-54.
[12] Dong F, Zeng L T, Yu Z M, et al.Differential accumulation of aroma compounds in normal green and albino-induced yellow tea (Camellia sinensis ) leaves[J]. Molecules, 2018, 23(10): 2677. doi: 10.3390/molecules23102677.
[13] Wang L, Yue C, Cao H L, et al.Biochemical and transcriptome analyses of a novel chlorophyll-deficient chlorina tea plant cultivar[J]. BMC Plant Biology, 2014(14): 352. doi: 10.1186/s12870-014-0352-x.
[14] Wu Q J, Chen Z, Sun W J, et al.De novo sequencing of the leaf transcriptome reveals complex light-responsive regulatory networks in Camellia sinensis cv. Baijiguan[J]. Frontiers in Plant Science, 2016, 7: 332. doi:10.3389/fpls.2016.00332.
[15] 李旭敏. 光敏型白化茶转录组分析及叶绿素代谢途径相关基因研究[D]. 杭州: 浙江大学, 2019.
Li X M.Study on transcriptome and gene expression with regard to chlorophylls metabolism pathway in photosensitive albino tea plant [D]. Hangzhou: Zhejiang University, 2019.
[16] Tsuchiya T, Ohta H, Okawa K, et al.Cloning of chlorophyllase, the key enzyme in chlorophyll degradation: finding of a lipase motif and the induction by methyl jasmonate[J]. PNAs, 1999, 96(26): 15362-15367.
[17] Chen C M M, Chao P Y, Huang M Y, et al. Chlorophyllase activity in green and non-green tissues of variegated plants[J]. South African Journal of Botany, 2012, 81(4): 44-49.
[18] 梁俊林, 顾国军, 唐实玉, 等. 银杏叶变色期的生理特征[J]. 四川农业大学学报, 2020, 38(1): 65-70.
Liang J L, Gu G J, Tang S Y, et al.Physiological characteristics of leaf color change period of Ginkho biloba L.[J]. Journal of Sichuan Agricultural University, 2020, 38(1): 65-70.
[19] Tian Y N, Zhong R H, Wei J B, et al.Arabidopsis CHLOROPHYLLASE 1 protects young leaves from long-term photodamage by facilitating FtsH-mediated D1 degradation in photosystem Ⅱ repair[J]. Molecular Plant, 2021, 14(7): 1149-1167.
[20] 张兰, 滕珂, 尹淑霞. 草地早熟禾叶绿素酶1基因PpCHL1的克隆和表达分析[J]. 中国草地学报, 2016, 38(4): 1-7.
Zhang L, Teng K, Yin S X.Cloning and expression analysis of chlorophyllase 1 gene PpCLH1 from Poa pratensis L.[J]. Chinese Journal of Grassland, 2016, 38(4): 1-7.
[21] Xu D, Lu Z C, Jin K M, et al.SPDE: a multi-functional software for sequence processing and data extraction[J]. Bioinformatics, 2021, 37(20): 3686-3687.
[22] Chen C J, Chen H, Zhang Y, et al.TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194-1202.
[23] Schelbert S, Aubry S, Burla B, et al.Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during feaf senescence in Arabidopsis[J]. Plant Cell, 2009, 21(3): 767-785.
[24] Takamiya K I, Tsuchiya T, Ohta H.Degradation pathway(s) of chlorophyll: what has gene cloning revealed?[J]. Trends in Plant Science, 2000, 5(10): 426-431.
[25] Harpaz-Saad S, Azoulay T, Arazi T, et al.Chlorohyllase is a rate-limiting enzyme in chlorophyll catabolism and is posttranslationally regulated[J]. The Plant Cell, 2007, 19(3): 1007-1022.
[26] 周丹, 罗灿, 于旭东, 等. 波罗蜜叶片突变体叶绿素含量测定和超微结构观察[J]. 热带作物学报, 2021, 42(10): 2935-2941.
Zhou D, Luo C, Yu X D, et al.Determination of chlorophyll content and observation of ultrastructure in leaves of mutants of Artocarpus heterophyllus[J]. Chinese Journal of Tropical Crops, 2021, 42(10): 2935-2941.
[27] 梁俊林, 李俭, 代鑫, 等. 施加Fe2+和Cu2+对鸡爪槭叶色变化的生理影响[J]. 应用与环境生物学报, 2021, 27(3): 549-554.
Liang J L, Li J, Dai X, et al.Physiological effects of Fe2+ and Cu2+ application on leaf color changes in Acer palmatum Thunb[J]. Chinese Journal of Applied and Environmental, 2021, 27(3): 549-554.
[28] 王绘艳. 小麦叶绿素和脱镁叶绿素酶基因的作用及表达分析[D]. 太原: 山西农业大学, 2015.
Wang H Y.The function and gene expression analysis of chlorophyllase and pheophttinase in Wheat [D]. Taiyuan: Shanxi Agricultural University, 2015.
[29] 李远华, 顾玮, 倪德江, 等. 茶树叶绿素酶活性的变化研究[J]. 茶叶科学, 2011, 31(1): 27-32.
Li Y H, Gu W, Ni D J, et al.Study on variation of chlorophyllase activity in tea plant (Camellia sinensis)[J]. Journal of Tea Science, 2011, 31(1): 27-32.
[30] 樊艳燕, 刘玉梅, 李占省, 等. 青花菜衰老过程中叶绿素降解相关基因的表达分析[J]. 园艺学报, 2015, 42(7): 1338-1346.
Fan Y Y, Liu Y M, Li Z X, et al.Analysis of the expression of chlorophyll degrading genes during senescence of Broccoli[J]. Acta Horticulturae Sinica, 2015, 42(7): 1338-1346.
[31] Chen M C M, Yang J H, Liu C H, et al. Molecular, structural, and phylogenetic characterization of two chlorophyllase isoforms in Pachira macrocarpa[J]. Plant Systematics and Evolution. 2014, 300: 633-643.
[32] Okazawa A, Tang L, Itoh Y, et al.Characterization and subcellular localization of chlorophyllase from Ginkgo biloba[J]. Zeitschrift für Naturforschung C, 2006, 61(1/2): 111-117.
[33] Shemer T A, Harpaz-Saad S, Belausov E, et al.Citrus chlorophyllase dynamics at ethylene-induced fruit color-break: a study of chlorophyllase expression, posttranslational processing kinetics, and in situ intracellular localization[J]. Plant Physiology, 2008, 148(1): 108-118.
[34] Hrtensteiner S, Krutler B.Chlorophyll breakdown in higher plants[J]. Biochimica et Biophysica Acta, 2011, 1807(8): 977-988.
[35] Nicole S A, Silivia S B, Marion K C, et al.The chlorophyllases AtCLH1 and AtCLH2 are not essential for senescence-related chlorophyll breakdown in Arabidopsis thaliana[J]. FEBS Letters, 2007, 581(28): 5517-5525.
[36] Hu X, Makita S, Schelbert S, et al.Reexamination of chlorophyllase function implies its involvement in defense against chewing herbivores[J]. FEBS Letters, 2015, 167(3): 660-670.
[37] Begoa R M, Laura C, Jose D F, et al.CDF transcription factors: plant regulators to deal with extreme environmental conditions[J]. Journal of Experimental Botany, 2020, 71(13): 3803-3815.
[38] Henriques R, Wang H, Liu J, et al.The antiphasic regulatory module comprising CDF5 and its antisense RNA FLORE links the circadian clock to photoperiodic flowering[J]. The New phytologist, 2017, 216(3): 854-867.
[39] Fan Y G, Zhao X X, Wang H Y, et al.Effects of light intensity on metabolism of light-harvesting pigment and photosynthetic system in Camellia sinensis L. cultivar 'Huangjinya'[J]. Environmental and Experimental Botany, 2019, 166: 103796. doi: 10.1016/j.envexpbot.2019.06.009.
文章导航

/