[1] Zhong X M, Sun S F, Li F H, et al.Photosynthesis of a yellow-green mutant line in maize[J]. Photosynthetica, 2015, 53(4): 499-505. [2] Li W X, Yang S B, Lu Z G, et al.Cytological, physiological, and transcriptomic analyses of golden leaf coloration in Ginkgo biloba L[J]. Horticulture Research, 2018, 5: 12. doi: 10.1038/s41438-018-0015-4. [3] Gang H X, Liu G F, Chen S, et al.Physiological and transcriptome analysis of a yellow-green leaf mutant in birch (Betula platyphylla × B. Pendula)[J]. Forests, 2019, 10(2): 120. doi: 10.3390/f10020120. [4] Slattery R A, VanLoocke A, Bernacchi C J, et al. Photosynthesis, light use efficiency, and yield of reduced-chlorophyll soybean mutants in field conditions[J]. Frontiers in Plant Science, 2017, 8: 549. doi: 10.3389/fpls.2017.00549. [5] 元世昌, 黄亚伟, 王若兰, 等. 优质稻黄变期间营养组分的变化规律研究[J]. 食品科技, 2019, 44(6): 156-161. Yuan S C, Huang Y W, Wang R L, et al.Changes of nutrient components during high quality rice yellowing[J]. Food Science and Technology, 2019, 44(6): 156-161. [6] Ma L L, Liu Y L, Cao D, et al.Quality constituents of high amino acid content tea cultivars with various leaf colors[J]. Turkish Journal of Agriculture and Forestry, 2018, 42(6): 383-392. [7] Shin Y H, Yang R, Shi Y L, et al.Light-sensitive albino tea plants and their characterization[J]. Hortscience, 2018, 53(2): 144-147. [8] 范延艮, 赵秀秀, 王翰悦, 等. 黄金芽不同色泽叶片生理特性研究[J]. 茶叶科学, 2019, 39(5): 530-536. Fan Y G, Zhao X X, Wang H Y, et al.Study on physiological charateristics of leaves with different colors of ‘Huangjinya'[J]. Jounal of Tea Science, 2019, 39(5): 530-536. [9] 吴全金. ‘白鸡冠'茶树响应光调控的基因差异及理化特征分析[D]. 福州: 福建农林大学, 2015. Wu Q J.Gene differential analysis and physicochemical characteristics of Camellia sinensis cv. Baijiguan in response to light [D]. Fuzhou: Fujian Agriculture and Forestry University, 2015. [10] Li N, Yang Y P, Ye J H, et al.Effects of sunlight on gene expression and chemical composition of light-sensitive albino tea plant[J]. Plant Growth Regulation, 2016, 78(2): 253-262. [11] 周喆, 陈志丹, 吴全金, 等. 白鸡冠茶树CsPPH基因全长cDNA克隆与表达分析[J]. 茶叶科学, 2020, 40(1): 43-54. Zhou Z, Chen Z D, Wu Q J, et al.Cloning and expression analysis of CsPPH gene in tea plant (Camellia sisnensis)[J]. Jounal of Tea Science, 2020, 40(1): 43-54. [12] Dong F, Zeng L T, Yu Z M, et al.Differential accumulation of aroma compounds in normal green and albino-induced yellow tea (Camellia sinensis ) leaves[J]. Molecules, 2018, 23(10): 2677. doi: 10.3390/molecules23102677. [13] Wang L, Yue C, Cao H L, et al.Biochemical and transcriptome analyses of a novel chlorophyll-deficient chlorina tea plant cultivar[J]. BMC Plant Biology, 2014(14): 352. doi: 10.1186/s12870-014-0352-x. [14] Wu Q J, Chen Z, Sun W J, et al.De novo sequencing of the leaf transcriptome reveals complex light-responsive regulatory networks in Camellia sinensis cv. Baijiguan[J]. Frontiers in Plant Science, 2016, 7: 332. doi:10.3389/fpls.2016.00332. [15] 李旭敏. 光敏型白化茶转录组分析及叶绿素代谢途径相关基因研究[D]. 杭州: 浙江大学, 2019. Li X M.Study on transcriptome and gene expression with regard to chlorophylls metabolism pathway in photosensitive albino tea plant [D]. Hangzhou: Zhejiang University, 2019. [16] Tsuchiya T, Ohta H, Okawa K, et al.Cloning of chlorophyllase, the key enzyme in chlorophyll degradation: finding of a lipase motif and the induction by methyl jasmonate[J]. PNAs, 1999, 96(26): 15362-15367. [17] Chen C M M, Chao P Y, Huang M Y, et al. Chlorophyllase activity in green and non-green tissues of variegated plants[J]. South African Journal of Botany, 2012, 81(4): 44-49. [18] 梁俊林, 顾国军, 唐实玉, 等. 银杏叶变色期的生理特征[J]. 四川农业大学学报, 2020, 38(1): 65-70. Liang J L, Gu G J, Tang S Y, et al.Physiological characteristics of leaf color change period of Ginkho biloba L.[J]. Journal of Sichuan Agricultural University, 2020, 38(1): 65-70. [19] Tian Y N, Zhong R H, Wei J B, et al.Arabidopsis CHLOROPHYLLASE 1 protects young leaves from long-term photodamage by facilitating FtsH-mediated D1 degradation in photosystem Ⅱ repair[J]. Molecular Plant, 2021, 14(7): 1149-1167. [20] 张兰, 滕珂, 尹淑霞. 草地早熟禾叶绿素酶1基因PpCHL1的克隆和表达分析[J]. 中国草地学报, 2016, 38(4): 1-7. Zhang L, Teng K, Yin S X.Cloning and expression analysis of chlorophyllase 1 gene PpCLH1 from Poa pratensis L.[J]. Chinese Journal of Grassland, 2016, 38(4): 1-7. [21] Xu D, Lu Z C, Jin K M, et al.SPDE: a multi-functional software for sequence processing and data extraction[J]. Bioinformatics, 2021, 37(20): 3686-3687. [22] Chen C J, Chen H, Zhang Y, et al.TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194-1202. [23] Schelbert S, Aubry S, Burla B, et al.Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during feaf senescence in Arabidopsis[J]. Plant Cell, 2009, 21(3): 767-785. [24] Takamiya K I, Tsuchiya T, Ohta H.Degradation pathway(s) of chlorophyll: what has gene cloning revealed?[J]. Trends in Plant Science, 2000, 5(10): 426-431. [25] Harpaz-Saad S, Azoulay T, Arazi T, et al.Chlorohyllase is a rate-limiting enzyme in chlorophyll catabolism and is posttranslationally regulated[J]. The Plant Cell, 2007, 19(3): 1007-1022. [26] 周丹, 罗灿, 于旭东, 等. 波罗蜜叶片突变体叶绿素含量测定和超微结构观察[J]. 热带作物学报, 2021, 42(10): 2935-2941. Zhou D, Luo C, Yu X D, et al.Determination of chlorophyll content and observation of ultrastructure in leaves of mutants of Artocarpus heterophyllus[J]. Chinese Journal of Tropical Crops, 2021, 42(10): 2935-2941. [27] 梁俊林, 李俭, 代鑫, 等. 施加Fe2+和Cu2+对鸡爪槭叶色变化的生理影响[J]. 应用与环境生物学报, 2021, 27(3): 549-554. Liang J L, Li J, Dai X, et al.Physiological effects of Fe2+ and Cu2+ application on leaf color changes in Acer palmatum Thunb[J]. Chinese Journal of Applied and Environmental, 2021, 27(3): 549-554. [28] 王绘艳. 小麦叶绿素和脱镁叶绿素酶基因的作用及表达分析[D]. 太原: 山西农业大学, 2015. Wang H Y.The function and gene expression analysis of chlorophyllase and pheophttinase in Wheat [D]. Taiyuan: Shanxi Agricultural University, 2015. [29] 李远华, 顾玮, 倪德江, 等. 茶树叶绿素酶活性的变化研究[J]. 茶叶科学, 2011, 31(1): 27-32. Li Y H, Gu W, Ni D J, et al.Study on variation of chlorophyllase activity in tea plant (Camellia sinensis)[J]. Journal of Tea Science, 2011, 31(1): 27-32. [30] 樊艳燕, 刘玉梅, 李占省, 等. 青花菜衰老过程中叶绿素降解相关基因的表达分析[J]. 园艺学报, 2015, 42(7): 1338-1346. Fan Y Y, Liu Y M, Li Z X, et al.Analysis of the expression of chlorophyll degrading genes during senescence of Broccoli[J]. Acta Horticulturae Sinica, 2015, 42(7): 1338-1346. [31] Chen M C M, Yang J H, Liu C H, et al. Molecular, structural, and phylogenetic characterization of two chlorophyllase isoforms in Pachira macrocarpa[J]. Plant Systematics and Evolution. 2014, 300: 633-643. [32] Okazawa A, Tang L, Itoh Y, et al.Characterization and subcellular localization of chlorophyllase from Ginkgo biloba[J]. Zeitschrift für Naturforschung C, 2006, 61(1/2): 111-117. [33] Shemer T A, Harpaz-Saad S, Belausov E, et al.Citrus chlorophyllase dynamics at ethylene-induced fruit color-break: a study of chlorophyllase expression, posttranslational processing kinetics, and in situ intracellular localization[J]. Plant Physiology, 2008, 148(1): 108-118. [34] Hrtensteiner S, Krutler B.Chlorophyll breakdown in higher plants[J]. Biochimica et Biophysica Acta, 2011, 1807(8): 977-988. [35] Nicole S A, Silivia S B, Marion K C, et al.The chlorophyllases AtCLH1 and AtCLH2 are not essential for senescence-related chlorophyll breakdown in Arabidopsis thaliana[J]. FEBS Letters, 2007, 581(28): 5517-5525. [36] Hu X, Makita S, Schelbert S, et al.Reexamination of chlorophyllase function implies its involvement in defense against chewing herbivores[J]. FEBS Letters, 2015, 167(3): 660-670. [37] Begoa R M, Laura C, Jose D F, et al.CDF transcription factors: plant regulators to deal with extreme environmental conditions[J]. Journal of Experimental Botany, 2020, 71(13): 3803-3815. [38] Henriques R, Wang H, Liu J, et al.The antiphasic regulatory module comprising CDF5 and its antisense RNA FLORE links the circadian clock to photoperiodic flowering[J]. The New phytologist, 2017, 216(3): 854-867. [39] Fan Y G, Zhao X X, Wang H Y, et al.Effects of light intensity on metabolism of light-harvesting pigment and photosynthetic system in Camellia sinensis L. cultivar 'Huangjinya'[J]. Environmental and Experimental Botany, 2019, 166: 103796. doi: 10.1016/j.envexpbot.2019.06.009. |