表没食子儿茶素没食子酸酯(EGCG)作为茶叶中主要生物活性成分,具有良好的生理功能,但低稳定性使其容易被氧化降解,生物利用率低。利用羧甲基壳聚糖(CMC)、壳聚糖盐酸盐(CHC)、β-乳球蛋白(β-LG)作为壁材,制备壳聚糖复合β-乳球蛋白负载EGCG纳米粒,通过透射电镜、结构表征(粒径、Zeta电位测定)对颗粒微观形态进行观察,利用高效液相色谱仪对颗粒包埋率、模拟胃肠液释放率进行测定,最后建立糖尿病小鼠模型,探究包埋后颗粒的降血糖活性。结果表明,CS-β-LG-EGCG纳米粒结构完整、粒径10~100 nm、粒子分散;包埋率大于50%,且在肠液和胃液中具有缓释作用;CS-β-LG-EGCG纳米粒与胰岛素无拮抗作用,与未包埋的EGCG相比,包埋后颗粒具备的缓释作用可减缓血糖的回升。
As the main bioactive component in tea, EGCG has abundant physiological functions. However, its low stability makes it easy to be degraded and has low bioavailability. In this experiment, carboxymethyl chitosan (CMC), chitosan hydrochloride (CHC), and β-lactoglobulin (β-LG) were used as wall materials to encapsulate EGCG. The microscopic morphology of particles were observed through electron microscope microscopic morphological observation, structural characterization (measurement of particle size, Zeta potential). The entrapment efficiency and simulated gastrointestinal fluid release rate were determined by HPLC. Finally, the activities of nanoparticles were explored by measuring the effect of nanoparticles on blood glucose in diabetic mice. The result shows that the prepared CS-β-LG-EGCG nanoparticles had complete structures, particle size of 10-100 nm, and certain dispersibilities. The entrapment efficiency was greater than 50%, and it had a slow-release effect in intestinal and gastric juices. CS-β-LG-EGCG nanoparticles had no antagonistic effect with insulin. Compared with uncoated EGCG, the sustained-release effect of the particles can slow down the recovery of blood glucose.
[1] Chakrawarti L, Agrawal R, Dang S, et al.Therapeutic effects of EGCG: a patent review[J]. Expert Opinion on Therapeutic Patents, 2016, 26(8): 907-916.
[2] Henning S M, Yang J, Hsu M, et al.Decaffeinated green and black tea polyphenols decrease weight gain and alter microbiome populations and function in diet-induced obese mice[J]. European Journal of Nutrition, 2018, 57(8): 2759-2769.
[3] 李兰. 绿茶提取物的降血糖研究[D]. 杭州: 浙江大学, 2014.
Li L.Study on hypoglycemic effect of green tea extract [D]. Hangzhou: Zhejiang University, 2014.
[4] 张灵枝, 邓旭铭, 潘顺顺, 等. EGCG防治糖尿病作用及机制研究进展[J]. 华南农业大学学报, 2017, 38(5): 50-55.
Zhang L Z, Deng X M, Pan S S, et al.Research progress on the effect and mechanism of EGCG in the prevention and treatment of diabetes mellitus[J]. Journal of South China Agricultural University, 2017, 38(5): 50-55.
[5] Shpigelman A, Israeli G, Livney Y D.Thermally-induced protein-polyphenol co-assemblies: beta lactoglobulin-based nanocomplexes as protective nanovehicles for EGCG[J]. Food Hydrocolloids, 2010, 24(8): 735-743.
[6] 黄业伟, 高晨, 颜平, 等. 表没食子儿茶素没食子酸酯(EGCG)对血液胰岛素和胰高血糖素的影响[J]. 西南农业学报, 2019, 32(3): 534-538.
Huang Y W, Gao C, Yan P, et al.Effect of epigallocatechin gallate on blood insulin and glucagon[J]. Southwest China Journal of Agricultural Sciences, 2019, 32(3): 534-538.
[7] 杜文凯, 蔡烈伟, 李博, 等. β-乳球蛋白包埋花色苷C3G对其抗氧化活性的保护[J]. 食品与发酵工业, 2012, 38(5): 32-36.
Du W K, Cai L W, Li B, et al.Protection of β-lactoglobulin-encapsulated anthocyanin C3G on its antioxidant activity[J]. Food and Fermentation Industries, 2012, 38(5): 32-36.
[8] 刘彩云, 周围, 毕阳, 等. 纳米技术在食品工业中的应用[J]. 食品工业科技, 2005, 26(4): 185-187.
Liu C Y, Zhou W, Bi Y, et al.The applications of nanotechnology in food industry[J]. Science and Technology of Food Industry, 2005, 26(4): 185-187.
[9] 杜文凯. β-乳球蛋白与表没食子儿茶素没食子酸酯制备纳米粒及其抗肿瘤活性研究[D]. 杭州: 浙江工商大学, 2013.
Du W K.Preparation of and anti-cancer activity evaluation of the nanoparticles of β-lactoglobulin-epigallocatechin gallate [D]. Hangzhou: Zhejiang Gongshang University, 2013.
[10] Ge J, Yue X Y, Wang S, et al.Nanocomplexes composed of chitosan derivatives and β-Lactoglobulin as a carrier for anthocyanins: preparation, stability and bioavailability in vitro[J]. Food Research International, 2019, 116: 336-345.
[11] Ge J, Yue P X, Chi J P.et al.Formation and stability of anthocyanins-loaded nanocomplexes prepared with chitosan hydrochloride and carboxymethyl chitosan[J]. Food Hydrocolloids, 2018, 74: 23-31.
[12] 严花. 壳聚糖/玉米醇溶蛋白负载EGCG纳米包装膜的制备与性能研究[D]. 合肥: 安徽农业大学, 2017.
Yan H.Preparation and characterization of edible chitosan films incorporated with EGCG loaded Chitosan/Zein nanoparticles [D]. Hefei: Anhui Agricultural University, 2017.
[13] 王智能, 王允, 吴光旭, 等. 体外模拟胃肠消化对不同热处理荷叶中酚类物质释放量及抗氧化活性的影响[J]. 核农学报, 2019, 33(10): 1975-1982.
Wang Z N, Wang Y, Wu G X, et al.Effects of simulated gastrointestinal digestion in vitro on the release of phenolic substances and antioxidant activity in different heat-treated lotus leaves[J]. Journal of Nuclear Agricultural Sciences, 2019, 33(10): 1975-1982.
[14] Fu T J, Abbott U R, Hatzos C, et al.Digestibility of food allergens and nonallergenic proteins in simulated gastric fluid and simulated intestinal fluid: a comparative study[J]. Journal of Agricultural and Food Chemistry, 2002, 50: 7154-7160.
[15] Matteucci E, Giampietro O.Proposal open for discussion: defining agreed diagnostic procedures in experimental diabetes research[J]. Journal of Ethnopharmacology, 2008, 115(2): 163-172.
[16] 宋齐, 潘凯, 曹兵. 纳滤膜在乳清脱盐中的应用研究[J]. 膜科学与技术, 2011, 31(2): 100-103.
Song Q, Pan K, Cao B.Application of nanofiltration membrane in whey desalination[J]. Membrane Science and Technology, 2011, 31(2): 100-103.
[17] Anal A K, Tobiassen A, Flanagan J, et al.Preparation and characterization of nanoparticles formed by chitosan-caseinate interactions[J]. Colloids and Surfaces B: Biointerfaces, 2008, 64(1): 104-110.
[18] 祝宇铭. 表没食子儿茶素没食子酸酯降血糖作用及其机制初步探讨[D]. 乌鲁木齐: 新疆医科大学, 2010.
Zhu Y M.Study on mechanism of hypoglycemic effect of epigallocatechin-3-gallate [D]. Urumqi: Xingjiang Medical University, 2010.
[19] 祝宇铭, 王竹. 表没食子儿茶素没食子酸酯防治2型糖尿病的分子机制研究进展[J]. 国外医学(卫生学分册), 2009, 36(6): 385-387.
Zhu Y M, Wang Z.Research progress on the molecular mechanism of epigallocatechin gallate in the prevention and treatment of type 2 diabetes[J]. Foreign Medical Sciences (Section of Hygiene), 2009, 36(6): 385-387.