欢迎访问《茶叶科学》,今天是
研究报告

武夷肉桂加工中挥发性成分糖苷结合物和香气品质形成研究

  • 吴宗杰 ,
  • 欧晓西 ,
  • 林宏政 ,
  • 余欣茹 ,
  • 程守悦 ,
  • 吴晴阳 ,
  • 李鑫磊 ,
  • 孙云
展开
  • 1.福建农林大学园艺学院,福建 福州 350002;
    2.茶学福建省高校重点实验室,福建 福州 350002;
    3.福建省农业科学院茶叶研究所,福建 福州 350012
吴宗杰,男,硕士研究生,主要从事茶叶加工与品质方面的研究,793232119@qq.com。

收稿日期: 2023-11-06

  修回日期: 2023-11-24

  网络出版日期: 2024-03-13

基金资助

国家茶叶产业技术体系(CARS-19)、福建农林大学茶产业链科技创新与服务体系建设项目(K1520005A06)、福建张天福茶叶发展基金会科技创新基金(FJZTF01)

Study on the Glycosidically Bound Volatiles and Aroma Constituents in the Processing of Wuyi Rougui

  • WU Zongjie ,
  • OU Xiaoxi ,
  • LIN Hongzheng ,
  • YU Xinru ,
  • CHEN Shouyue ,
  • WU Qingyang ,
  • LI Xinlei ,
  • SUN Yun
Expand
  • 1. College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
    2. Key Laboratory of Tea Science of Fujian Universities, Fuzhou 350002, China;
    3. Tea Research Institute of Fujian Academy of Agricultural Sciences, Fuzhou 350012, China

Received date: 2023-11-06

  Revised date: 2023-11-24

  Online published: 2024-03-13

摘要

肉桂是武夷岩茶主栽品种,具有馥郁的花果香和辛锐的桂皮味特征。为明确武夷肉桂关键呈香物质和挥发性成分糖苷结合物(GBVs)对香气的贡献,采用超高效液相色谱四极杆/静电场轨道阱质谱仪系统(UHPLC-Q-Exactive/MS)和顶空固相微萃取-气相色谱-质谱联用(HS-SPME-GC-MS)技术对武夷肉桂加工过程GBVs和香气物质动态变化进行研究。结果表明,共检测到武夷肉桂11个不同加工阶段的276种香气物质,这些香气物质包括酯类、醇类、杂环化合物类、酮类、醛类、萜类等多种组分,其中杂环化合物类、酯类、萜类和醇类香气组分含量较高。正交偏最小二乘法判别分析(OPLS-DA)发现,武夷肉桂中30种特征香气物质变量重投影要性值和香气活度值均大于1,其中具有青味的(Z)-3-己烯醇和(E)-2-己烯醛含量在加工过程中下降,呈花香或果香的芳樟醇、苯甲醇、苯乙醛、香叶醇和β-罗勒烯含量在加工过程中上升,脱氢芳樟醇和α-石竹烯具有辛香的特征,可能是肉桂品种特征香气桂皮辛香的主要贡献物。在武夷肉桂毛茶中芳樟醇、苯乙醛、苯甲醇、2-乙氧基-3-甲基吡嗪和(E,E)-3,5-辛二烯-2-酮等物质香气特征影响值大于1,说明这些物质是武夷肉桂加工过程中关键呈香物质。在武夷肉桂中鉴定到10种GBVs,在加工过程中,葡萄糖苷的含量呈上升趋势,而樱草糖苷的含量呈下降趋势,GBVs总含量上保持相对稳定。在做青后期,葡萄糖苷和樱草糖苷的含量都呈现下降趋势,特别是苯甲基樱草糖苷、2-苯乙基樱草糖苷、香叶基樱草糖苷、芳樟基樱草糖苷和香叶基葡萄糖苷显著下降,结果表明GBVs参与了武夷肉桂花果香和甜香的形成。研究结果阐明武夷肉桂特征香气成分以及GBVs在武夷肉桂香气形成中的作用,有利于更好地提升武夷肉桂香气品质,提质增效。

本文引用格式

吴宗杰 , 欧晓西 , 林宏政 , 余欣茹 , 程守悦 , 吴晴阳 , 李鑫磊 , 孙云 . 武夷肉桂加工中挥发性成分糖苷结合物和香气品质形成研究[J]. 茶叶科学, 2024 , 44(1) : 84 -100 . DOI: 10.13305/j.cnki.jts.2024.01.005

Abstract

‘Rougui’, the main cultivar of Wuyi rock tea, is characterized by a rich floral and pungent cinnamon aroma. To elucidate the contribution of key aroma constituents and glycosidically bound volatiles (GBVs) to Wuyi Rougui rock tea, this study employed ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) and headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) to investigate the dynamic changes of GBVs and aroma constituents during the processing of Wuyi Rougui rock tea. The results reveal that a total of 276 aroma constituents were identified from 11 different processing stages of Wuyi Rougui rock tea. These aroma constituents belong to various chemical classes, including esters, alcohols, heterocyclic constituents, ketones, aldehydes and terpenes, with heterocyclic constituents, esters, terpenes and alcohols being the predominant aroma components. Orthogonal partial least squares-discriminant analysis (OPLS-DA) identified 35 characteristic aroma constituents in Wuyi Rougui rock tea, as indicated by their Variable Importance in Projection (VIP) values and Odor Activity Values (OAV) greater than 1. Notably, the contents of constituents associated with green and grassy flavor, such as (Z)-3-hexen-1-ol, (E)-2-nonenal and hexanal, exhibited decreasing trends during the processing, while aroma constituents associated with floral or fruity aromas, like linalool, benzyl alcohol, benzaldehyde, eugenol and β-ocimene, displayed increasing trends. Furthermore, in fresh leaves of Wuyi Rougui rock tea, aroma constituents including linalool, benzyl alcohol, benzaldehyde, 2-ethoxy-3-methylpyrazine and (E,E)-3,5-octadien-2-one exhibited ACI values greater than 1, suggesting they are key aroma constituents during the processing of Wuyi Rougui rock tea. Constituents such as dehydrocinnamyl alcohol and α-ionone contributed to the characteristic cinnamon aroma of Wuyi Rougui rock tea. In addition, ten GBVs were identified. During the processing, the contents of glucosides showed an upward trend, while primeveroside showed trend. The total contents of GBVs remained relatively stable. During the late stages of fermentation, both GBVs demonstrated declining trends, particularly constituents like benzyl primeveroside, 2-phenylethyl primeveroside, geranyl glucoside, linayl primeveroside and benzyl glucoside. The results indicate that GBVs were involved in the development of the faint scent and floral-fruity notes of Wuyi Rougui rock tea. This study clarified the role of characteristic aroma constituents and GBVs in the aroma formation of Wuyi Rougui rock tea, in order to better improve the aroma quality of Wuyi Rougui rock tea.

参考文献

[1] 毕婉君, 魏子淳, 郑玉成, 等. 基于ATD-GC-MS技术检测铁观音做青过程环境挥发性成分的动态变化[J]. 食品科学, 2023, 44(8): 201-211.
Bi W J, Wei Z C, Zheng Y C, et al.Using automatic thermal desorption gas chromatography-mass spectrometry to detect dynamic changes of environmental volatile components in Tieguanyin oolong tea during fine manipulation[J]. Food Science, 2023, 44(8): 201-211.
[2] 魏子淳, 庄加耘, 孙志琳, 等. 不同摊叶厚度晾青对武夷岩茶品质的影响[J]. 食品工业科技, 2023, 44(7): 97-106.
Wei Z C, Zhuang J Y, Sun Z L, et al.Effects on the quality of Wuyi rock tea with different airing thicknesses[J]. Science and Technology of Food Industry, 2023, 44(7): 97-106.
[3] 钟秋生, 彭佳堃, 戴伟东, 等. 基于UHPLC-Q-Exactive/MS的不同烘焙处理岩茶化学成分差异分析[J]. 食品科学, 2023, 44(20): 268-282.
Zhong Q S, Peng J K, Dai W D, et al.Analysis of differences in chemical constituents of Rougui rock tea with different roasting degrees by ultra-high performance liquid chromatography-quadrupole orbitrap mass spectrometry[J]. Food Science, 2023, 44(20): 268-282.
[4] 周子维, 刘宝顺, 武清扬, 等. 基于LOX-HPL途径的武夷肉桂加工中香气物质的形成与调控[J]. 食品与生物技术学报, 2021, 40(1): 100-111.
Zhou Z W, Liu B S, Wu Q Y, et al.Formation and regulation of aroma-related volatiles during the manufacturing process of wuyi rougui tea via LOX-HPL pathway[J]. Journal of Food Science and Biotechnology, 2021, 40(1): 100-111.
[5] Yang Z Y, Baldermann S, Watanabe N.Recent studies of the volatile compounds in tea[J]. Food Research International, 2013, 53(2): 585-599.
[6] 黄慧清, 郑玉成, 胡清财, 等. 基于SBSE-GC-O-MS技术的三个代表性乌龙茶品种关键香气成分分析[J]. 食品科学, 2023: 1-13. [2023-11-05]. http://kns.cnki.net/kcms/detail/11.2206.ts.20230830.0954.011.html.
Huang H Q, Zheng Y C, Hu Q C, et al. Study on key aroma components of three representative oolong tea varieties based on SBSE-GC-O-MS technology [J]. Food Science, 2023: 1-13. [2023-11-05]. http://kns.cnki.net/kcms/detail/11.2206.ts.20230830.0954.011.html.
[7] Wang B S, Yu M G, Tang Y, et al.Characterization of odor-active compounds in Dahongpao Wuyi rock tea (Camellia sinensis) by sensory-directed flavor analysis[J]. Journal of Food Composition and Analysis, 2023, 123(3): 105612. doi: 10.1016/j.jfca.2023.105612.
[8] Ma C Y, Li J X, Chen W, et al.Study of the aroma formation and transformation during the manufacturing process of oolong tea by solid-phase micro-extraction and gas chromatography-mass spectrometry combined with chemometrics[J]. Food Research International, 2018, 108: 413-422.
[9] Zeng L T, Watanabe N, Yang Z Y.Understanding the biosyntheses and stress response mechanisms of aroma compounds in tea (Camellia sinensis) to safely and effectively improve tea aroma[J]. Critical Reviews in Food Science and Nutrition, 2019, 59(14): 2321-2334.
[10] Liu H F, Li S F, Zhong Y M, et al.Study of aroma compound formations and transformations during Jinxuan and Qingxin oolong tea processing[J]. International Journal of Food Science & Technology, 2021, 56(11): 5629-5638.
[11] Ho C T, Zheng X, Li S M.Tea aroma formation[J]. Food Science & Human Wellness, 2015, 4(1): 9-27.
[12] Guo X Y, Ho C T, Wan X C, et al.Changes of volatile compounds and odor profiles in Wuyi rock tea during processing[J]. Food Chemistry, 2021, 341: 128230. doi: 10.1016/j.foodchem.2020.128230.
[13] Guo X Y, Schwab W, Ho T C, et al.Characterization of the aroma profiles of oolong tea made from three tea cultivars by both GC-MS and GC-IMS[J]. Food Chemistry, 2022, 376: 131933. doi: 10.1016/j.foodchem.2021.131933.
[14] 欧阳珂, 张成, 廖雪利, 等. 基于感官组学分析玉米香型南川大茶树工夫红茶特征香气[J]. 茶叶科学, 2022, 42(3): 397-408.
Ouyang K, Zhang C, Liao X L, et al.Characterization of the key aroma in corn-scented congou black tea manufactured from Camellia nanchuanica by sensory omics techniques[J]. Journal of Tea Science, 2022, 42(3): 397-408.
[15] Yang P, Yu M G, Song H L, et al.Characterization of key aroma-active compounds in rough and moderate fire Rougui Wuyi Rock tea (Camellia sinensis) by sensory-directed flavor analysis and elucidation of the influences of roasting on aroma[J]. Journal of Agricultural and Food Chemistry, 2022, 70(1): 267-278.
[16] 李朋亮. 基于修饰代谢组学的绿茶中糖苷类品质成分研究[D]. 武汉: 华中农业大学, 2018.
Li P L.Study on the glycosidic flavor constituents in green tea based on modification-specific metabolomics approach[J]. Wuhan: Huazhong Agricultural University, 2018.
[17] Gui J D, Fu X M, Zhou Y, et al.Does enzymatic hydrolysis of glycosidically bound volatile compounds really contribute to the formation of volatile compounds during the oolong tea manufacturing process?[J]. Journal of Agricultural and Food Chemistry, 2015, 63(31): 6905-6914.
[18] 路欣, 陈丽, 肖凌, 等. 凤凰单丛香气及糖苷类香气前体变化研究[J]. 食品安全质量检测学报, 2018, 9(11): 2808-2816.
Lu X, Chen L, Xiao L, et al.Changes of volatile and glycosidically aroma precursors of Fenghuang Dancong[J]. Journal of Food Safety & Quality, 2018, 9(11): 2808-2816.
[19] 谢运海, 郑德勇, 叶乃兴, 等. 漳平水仙茶加工过程中香气前体含量的变化[J]. 茶叶科学, 2016, 36(1): 11-17.
Xie Y H, Zheng D Y, Ye N X, et al.Analysis on the contents of Zhangping Shuixian tea's aroma precursors during manufacturing processes[J]. Journal of Tea Science, 2016, 36(1): 11-17.
[20] Cui J L, Katsuno T, Totsuka K, et al.Characteristic fluctuations in glycosidically bound volatiles during tea processing and identification of their unstable derivatives[J]. Journal of Agricultural and Food Chemistry, 2016, 64(5): 1151-1157.
[21] Li P L, Zhu Y, Lu M L, et al.Variation patterns in the content of glycosides during green tea manufacturing by a modification-specific metabolomics approach: enzymatic reaction promoting an increase in the glycosidically bound volatiles at the pan firing stage[J]. Food Chemistry, 2018, 279: 80-87.
[22] Wang D M, Kubota K, Kobayashi A, et al.Analysis of glycosidically bound aroma precursors in tea leaves. 3. Change in the glycoside content of tea leaves during the oolong tea manufacturing process[J]. Journal of Agricultural & Food Chemistry, 2001, 49(11): 5391-5396.
[23] Dai W D, Yin P Y, Zeng Z D, et al.Nontargeted modification-specific metabolomics study based on liquid chromatography-high-resolution mass spectrometry[J]. Analytical Chemistry, 2014, 86(18): 9146-9153.
[24] Chen D, Sun Z, Gao J J, et al.Metabolomics combined with proteomics provides a novel interpretation of the compound differences among chinese tea cultivars (Camellia sinensis var. sinensis) with different manufacturing suitabilities[J]. Food Chemistry, 2022, 377: 131976. doi: 10.1016/j.foodchem.2021.131976.
[25] Yuan H L, Cao G P, Hou X D, et al.Development of a widely targeted volatilomics method for profiling volatilomes in plants[J]. Molecular Plant, 2022, 15(1): 189-202.
[26] 王梦琪, 朱荫, 张悦, 等. 茶叶挥发性成分中关键呈香成分研究进展[J]. 食品科学, 2019, 40(23): 341-349.
Wang M Q, Zhu Y, Zhang Y, et al.A review of recent research on key aroma compounds in tea[J]. Food Science, 2019, 40(23): 341-349.
[27] 王赞, 郭雅玲. 做青工艺对乌龙茶特征香气成分影响的研究进展[J]. 食品安全质量检测学报, 2017, 8(5): 1603-1609.
Wang Z, Guo Y L.Research progress on influence of green-making process on characteristic aroma components of oolong tea[J]. Journal of Food Safety & Quality, 2017, 8(5): 1603-1609.
[28] 陈林, 陈键, 陈泉宾, 等. 做青工艺对乌龙茶香气组成化学模式的影响[J]. 茶叶科学, 2014, 34(4): 387-395.
Chen L, Chen J, Chen Q B, et al.Effects of green-making technique on aroma pattern of oolong tea[J]. Journal of Tea Science, 2014, 34(4): 387-395.
[29] 刘彬彬. 新品系“606”乌龙茶加工中主要呈味物质动态变化及FOMT基因表达研究[D]. 福州: 福建农林大学, 2020.
Liu B B.Study on the dynamic changes of main taste substances and FOMT gene expression in the processing of new strain "606" oolong tea [D]. Fuzhou: Fujian Agriculture and Forestry University, 2020.
[30] Ma C Y, Li J X, Chen W, et al.Study of the aroma formation and transformation during the manufacturing process of oolong tea by solid-phase micro-extraction and gas chromatography-mass spectrometry combined with chemometrics[J]. Food Research International, 2018, 108: 413-422.
[31] 杨云, 刘彬彬, 周子维, 等. 新品系‘606’乌龙茶加工过程中呈味物质的变化与品质分析[J]. 食品工业科技, 2021, 42(23): 311-318.
Yang Y, Liu B B, Zhou Z W, et al.Changes of taste compounds and quality analysis during the manufacturing process of a new tea line ‘606’ oolong tea[J]. Science and Technology of Food Industry, 2021, 42(23): 311-318.
[32] Ruther J.Retention index database for identification of general green leaf volatiles in plants by coupled capillary gas chromatography-mass spectrometry[J]. Journal of Chromatography A, 2000, 890(2): 313-319.
[33] Liu Z B, Chen F C, Sun J Y, et al.Dynamic changes of volatile and phenolic components during the whole manufacturing process of Wuyi rock tea (Rougui)[J]. Food Chemistry, 2022, 367: 130624. doi: 10.1016/j.foodchem.2021.130624.
[34] Yue C, Cao H L, Zhang S R, et al.Aroma characteristics of Wuyi rock tea prepared from 16 different tea plant varieties[J]. Food Chemistry: X, 2023, 17: 100586. doi: 10.1016/j.fochx.2023.100586.
[35] 佐明兴, 闫瑞, 封子旋, 等. 基于代谢组学分析铁观音乌龙茶包揉过程中代谢物动态变化[J]. 食品科学, 2023, 44(22): 353-365.
Zuo M X, Yan R, Feng Z X, et al.Metabolomics analysis of dynamic changes in metabolites in tieguanyin oolong tea during wrapping-twisting[J]. Food Science, 2023, 44(22): 353-365.
[36] 陈倩莲, 刘仕章, 占仕权, 等. 基于HS-SPME-GC-MS和OAV鉴定4种武夷岩茶关键呈香物质[J]. 食品工业科技, 2023, 44(14): 296-303.
Chen Q L, Liu S Z, Zhan S Q, et al.Identification of four kind key aroma components of Wuyi rock tea based on HS-SPME-GC-MS and OAV[J]. Science and Technology of Food Industry, 2023, 44(14): 296-303.
[37] Zheng Y C, Hu Q C, Wu Z J, et al.Volatile metabolomics and coexpression network analyses provide insight into the formation of the characteristic cultivar aroma of oolong tea (Camellia sinensis)[J]. LWT, 2022, 164: 113666. doi: doi.org/10.1016/j.lwt.2022.113666.
[38] Guo X Y, Song C K, Ho C, et al.Contribution of L-theanine to the formation of 2,5-dimethylpyrazine, a key roasted peanutty flavor in oolong tea during manufacturing processes[J]. Food Chemistry, 2018, 263: 18-28.
[39] Zhang Y, Kang S Y, Yan H, et al.Insights into characteristic volatiles in wuyi rock teas with different cultivars by chemometrics and gas chromatography olfactometry/mass spectrometry[J]. Foods, 2022, 11(24): 4109. doi: 10.3390/foods11244109.
[40] Mizutani M, Nakanishi H, Ema J I, et al.Cloning of β-primeverosidase from tea leaves, a key enzyme in tea aroma formation[J]. Plant Physiology, 2002, 130(4): 2164-2176.
[41] Ohgami S, Ono E, Horikawa M, et al.Volatile glycosylation in tea plants: sequential glycosylations for the biosynthesis of aroma β-primeverosides are catalyzed by two Camellia sinensis glycosyltransferases[J]. Plant Physiology, 2015, 168(2): 464-477.
[42] 张正竹. 绿茶主要香气物质的糖苷类前体研究[D]. 长沙: 湖南农业大学, 2000.
Zhang Z Z.Study on glycoside precursors of main aroma substances in green tea [D]. Changsha: Hunan Agricultural University, 2000.
文章导航

/