[1] 毕婉君, 魏子淳, 郑玉成, 等. 基于ATD-GC-MS技术检测铁观音做青过程环境挥发性成分的动态变化[J]. 食品科学, 2023, 44(8): 201-211. Bi W J, Wei Z C, Zheng Y C, et al.Using automatic thermal desorption gas chromatography-mass spectrometry to detect dynamic changes of environmental volatile components in Tieguanyin oolong tea during fine manipulation[J]. Food Science, 2023, 44(8): 201-211. [2] 魏子淳, 庄加耘, 孙志琳, 等. 不同摊叶厚度晾青对武夷岩茶品质的影响[J]. 食品工业科技, 2023, 44(7): 97-106. Wei Z C, Zhuang J Y, Sun Z L, et al.Effects on the quality of Wuyi rock tea with different airing thicknesses[J]. Science and Technology of Food Industry, 2023, 44(7): 97-106. [3] 钟秋生, 彭佳堃, 戴伟东, 等. 基于UHPLC-Q-Exactive/MS的不同烘焙处理岩茶化学成分差异分析[J]. 食品科学, 2023, 44(20): 268-282. Zhong Q S, Peng J K, Dai W D, et al.Analysis of differences in chemical constituents of Rougui rock tea with different roasting degrees by ultra-high performance liquid chromatography-quadrupole orbitrap mass spectrometry[J]. Food Science, 2023, 44(20): 268-282. [4] 周子维, 刘宝顺, 武清扬, 等. 基于LOX-HPL途径的武夷肉桂加工中香气物质的形成与调控[J]. 食品与生物技术学报, 2021, 40(1): 100-111. Zhou Z W, Liu B S, Wu Q Y, et al.Formation and regulation of aroma-related volatiles during the manufacturing process of wuyi rougui tea via LOX-HPL pathway[J]. Journal of Food Science and Biotechnology, 2021, 40(1): 100-111. [5] Yang Z Y, Baldermann S, Watanabe N.Recent studies of the volatile compounds in tea[J]. Food Research International, 2013, 53(2): 585-599. [6] 黄慧清, 郑玉成, 胡清财, 等. 基于SBSE-GC-O-MS技术的三个代表性乌龙茶品种关键香气成分分析[J]. 食品科学, 2023: 1-13. [2023-11-05]. http://kns.cnki.net/kcms/detail/11.2206.ts.20230830.0954.011.html. Huang H Q, Zheng Y C, Hu Q C, et al. Study on key aroma components of three representative oolong tea varieties based on SBSE-GC-O-MS technology [J]. Food Science, 2023: 1-13. [2023-11-05]. http://kns.cnki.net/kcms/detail/11.2206.ts.20230830.0954.011.html. [7] Wang B S, Yu M G, Tang Y, et al.Characterization of odor-active compounds in Dahongpao Wuyi rock tea (Camellia sinensis) by sensory-directed flavor analysis[J]. Journal of Food Composition and Analysis, 2023, 123(3): 105612. doi: 10.1016/j.jfca.2023.105612. [8] Ma C Y, Li J X, Chen W, et al.Study of the aroma formation and transformation during the manufacturing process of oolong tea by solid-phase micro-extraction and gas chromatography-mass spectrometry combined with chemometrics[J]. Food Research International, 2018, 108: 413-422. [9] Zeng L T, Watanabe N, Yang Z Y.Understanding the biosyntheses and stress response mechanisms of aroma compounds in tea (Camellia sinensis) to safely and effectively improve tea aroma[J]. Critical Reviews in Food Science and Nutrition, 2019, 59(14): 2321-2334. [10] Liu H F, Li S F, Zhong Y M, et al.Study of aroma compound formations and transformations during Jinxuan and Qingxin oolong tea processing[J]. International Journal of Food Science & Technology, 2021, 56(11): 5629-5638. [11] Ho C T, Zheng X, Li S M.Tea aroma formation[J]. Food Science & Human Wellness, 2015, 4(1): 9-27. [12] Guo X Y, Ho C T, Wan X C, et al.Changes of volatile compounds and odor profiles in Wuyi rock tea during processing[J]. Food Chemistry, 2021, 341: 128230. doi: 10.1016/j.foodchem.2020.128230. [13] Guo X Y, Schwab W, Ho T C, et al.Characterization of the aroma profiles of oolong tea made from three tea cultivars by both GC-MS and GC-IMS[J]. Food Chemistry, 2022, 376: 131933. doi: 10.1016/j.foodchem.2021.131933. [14] 欧阳珂, 张成, 廖雪利, 等. 基于感官组学分析玉米香型南川大茶树工夫红茶特征香气[J]. 茶叶科学, 2022, 42(3): 397-408. Ouyang K, Zhang C, Liao X L, et al.Characterization of the key aroma in corn-scented congou black tea manufactured from Camellia nanchuanica by sensory omics techniques[J]. Journal of Tea Science, 2022, 42(3): 397-408. [15] Yang P, Yu M G, Song H L, et al.Characterization of key aroma-active compounds in rough and moderate fire Rougui Wuyi Rock tea (Camellia sinensis) by sensory-directed flavor analysis and elucidation of the influences of roasting on aroma[J]. Journal of Agricultural and Food Chemistry, 2022, 70(1): 267-278. [16] 李朋亮. 基于修饰代谢组学的绿茶中糖苷类品质成分研究[D]. 武汉: 华中农业大学, 2018. Li P L.Study on the glycosidic flavor constituents in green tea based on modification-specific metabolomics approach[J]. Wuhan: Huazhong Agricultural University, 2018. [17] Gui J D, Fu X M, Zhou Y, et al.Does enzymatic hydrolysis of glycosidically bound volatile compounds really contribute to the formation of volatile compounds during the oolong tea manufacturing process?[J]. Journal of Agricultural and Food Chemistry, 2015, 63(31): 6905-6914. [18] 路欣, 陈丽, 肖凌, 等. 凤凰单丛香气及糖苷类香气前体变化研究[J]. 食品安全质量检测学报, 2018, 9(11): 2808-2816. Lu X, Chen L, Xiao L, et al.Changes of volatile and glycosidically aroma precursors of Fenghuang Dancong[J]. Journal of Food Safety & Quality, 2018, 9(11): 2808-2816. [19] 谢运海, 郑德勇, 叶乃兴, 等. 漳平水仙茶加工过程中香气前体含量的变化[J]. 茶叶科学, 2016, 36(1): 11-17. Xie Y H, Zheng D Y, Ye N X, et al.Analysis on the contents of Zhangping Shuixian tea's aroma precursors during manufacturing processes[J]. Journal of Tea Science, 2016, 36(1): 11-17. [20] Cui J L, Katsuno T, Totsuka K, et al.Characteristic fluctuations in glycosidically bound volatiles during tea processing and identification of their unstable derivatives[J]. Journal of Agricultural and Food Chemistry, 2016, 64(5): 1151-1157. [21] Li P L, Zhu Y, Lu M L, et al.Variation patterns in the content of glycosides during green tea manufacturing by a modification-specific metabolomics approach: enzymatic reaction promoting an increase in the glycosidically bound volatiles at the pan firing stage[J]. Food Chemistry, 2018, 279: 80-87. [22] Wang D M, Kubota K, Kobayashi A, et al.Analysis of glycosidically bound aroma precursors in tea leaves. 3. Change in the glycoside content of tea leaves during the oolong tea manufacturing process[J]. Journal of Agricultural & Food Chemistry, 2001, 49(11): 5391-5396. [23] Dai W D, Yin P Y, Zeng Z D, et al.Nontargeted modification-specific metabolomics study based on liquid chromatography-high-resolution mass spectrometry[J]. Analytical Chemistry, 2014, 86(18): 9146-9153. [24] Chen D, Sun Z, Gao J J, et al.Metabolomics combined with proteomics provides a novel interpretation of the compound differences among chinese tea cultivars (Camellia sinensis var. sinensis) with different manufacturing suitabilities[J]. Food Chemistry, 2022, 377: 131976. doi: 10.1016/j.foodchem.2021.131976. [25] Yuan H L, Cao G P, Hou X D, et al.Development of a widely targeted volatilomics method for profiling volatilomes in plants[J]. Molecular Plant, 2022, 15(1): 189-202. [26] 王梦琪, 朱荫, 张悦, 等. 茶叶挥发性成分中关键呈香成分研究进展[J]. 食品科学, 2019, 40(23): 341-349. Wang M Q, Zhu Y, Zhang Y, et al.A review of recent research on key aroma compounds in tea[J]. Food Science, 2019, 40(23): 341-349. [27] 王赞, 郭雅玲. 做青工艺对乌龙茶特征香气成分影响的研究进展[J]. 食品安全质量检测学报, 2017, 8(5): 1603-1609. Wang Z, Guo Y L.Research progress on influence of green-making process on characteristic aroma components of oolong tea[J]. Journal of Food Safety & Quality, 2017, 8(5): 1603-1609. [28] 陈林, 陈键, 陈泉宾, 等. 做青工艺对乌龙茶香气组成化学模式的影响[J]. 茶叶科学, 2014, 34(4): 387-395. Chen L, Chen J, Chen Q B, et al.Effects of green-making technique on aroma pattern of oolong tea[J]. Journal of Tea Science, 2014, 34(4): 387-395. [29] 刘彬彬. 新品系“606”乌龙茶加工中主要呈味物质动态变化及FOMT基因表达研究[D]. 福州: 福建农林大学, 2020. Liu B B.Study on the dynamic changes of main taste substances and FOMT gene expression in the processing of new strain "606" oolong tea [D]. Fuzhou: Fujian Agriculture and Forestry University, 2020. [30] Ma C Y, Li J X, Chen W, et al.Study of the aroma formation and transformation during the manufacturing process of oolong tea by solid-phase micro-extraction and gas chromatography-mass spectrometry combined with chemometrics[J]. Food Research International, 2018, 108: 413-422. [31] 杨云, 刘彬彬, 周子维, 等. 新品系‘606’乌龙茶加工过程中呈味物质的变化与品质分析[J]. 食品工业科技, 2021, 42(23): 311-318. Yang Y, Liu B B, Zhou Z W, et al.Changes of taste compounds and quality analysis during the manufacturing process of a new tea line ‘606’ oolong tea[J]. Science and Technology of Food Industry, 2021, 42(23): 311-318. [32] Ruther J.Retention index database for identification of general green leaf volatiles in plants by coupled capillary gas chromatography-mass spectrometry[J]. Journal of Chromatography A, 2000, 890(2): 313-319. [33] Liu Z B, Chen F C, Sun J Y, et al.Dynamic changes of volatile and phenolic components during the whole manufacturing process of Wuyi rock tea (Rougui)[J]. Food Chemistry, 2022, 367: 130624. doi: 10.1016/j.foodchem.2021.130624. [34] Yue C, Cao H L, Zhang S R, et al.Aroma characteristics of Wuyi rock tea prepared from 16 different tea plant varieties[J]. Food Chemistry: X, 2023, 17: 100586. doi: 10.1016/j.fochx.2023.100586. [35] 佐明兴, 闫瑞, 封子旋, 等. 基于代谢组学分析铁观音乌龙茶包揉过程中代谢物动态变化[J]. 食品科学, 2023, 44(22): 353-365. Zuo M X, Yan R, Feng Z X, et al.Metabolomics analysis of dynamic changes in metabolites in tieguanyin oolong tea during wrapping-twisting[J]. Food Science, 2023, 44(22): 353-365. [36] 陈倩莲, 刘仕章, 占仕权, 等. 基于HS-SPME-GC-MS和OAV鉴定4种武夷岩茶关键呈香物质[J]. 食品工业科技, 2023, 44(14): 296-303. Chen Q L, Liu S Z, Zhan S Q, et al.Identification of four kind key aroma components of Wuyi rock tea based on HS-SPME-GC-MS and OAV[J]. Science and Technology of Food Industry, 2023, 44(14): 296-303. [37] Zheng Y C, Hu Q C, Wu Z J, et al.Volatile metabolomics and coexpression network analyses provide insight into the formation of the characteristic cultivar aroma of oolong tea (Camellia sinensis)[J]. LWT, 2022, 164: 113666. doi: doi.org/10.1016/j.lwt.2022.113666. [38] Guo X Y, Song C K, Ho C, et al.Contribution of L-theanine to the formation of 2,5-dimethylpyrazine, a key roasted peanutty flavor in oolong tea during manufacturing processes[J]. Food Chemistry, 2018, 263: 18-28. [39] Zhang Y, Kang S Y, Yan H, et al.Insights into characteristic volatiles in wuyi rock teas with different cultivars by chemometrics and gas chromatography olfactometry/mass spectrometry[J]. Foods, 2022, 11(24): 4109. doi: 10.3390/foods11244109. [40] Mizutani M, Nakanishi H, Ema J I, et al.Cloning of β-primeverosidase from tea leaves, a key enzyme in tea aroma formation[J]. Plant Physiology, 2002, 130(4): 2164-2176. [41] Ohgami S, Ono E, Horikawa M, et al.Volatile glycosylation in tea plants: sequential glycosylations for the biosynthesis of aroma β-primeverosides are catalyzed by two Camellia sinensis glycosyltransferases[J]. Plant Physiology, 2015, 168(2): 464-477. [42] 张正竹. 绿茶主要香气物质的糖苷类前体研究[D]. 长沙: 湖南农业大学, 2000. Zhang Z Z.Study on glycoside precursors of main aroma substances in green tea [D]. Changsha: Hunan Agricultural University, 2000. |