欢迎访问《茶叶科学》,今天是
研究报告

一株云南木霉菌培养条件的优化及其对茶炭疽病的防控研究

  • 刘辉 ,
  • 冯月玲 ,
  • 朱秀英 ,
  • 郑周洲 ,
  • 刘思睿 ,
  • 周罗娜 ,
  • 潘雪珍 ,
  • 宋莉
展开
  • 1.贵州省农业科学院生物技术研究所/贵州省农业生物技术重点实验室,贵州 贵阳 550009;
    2.贵州大学生命科学学院/农业生物工程研究院,山地植物资源保护与保护种质创新教育部重点实验室,贵州 贵阳 550025;
    3.贵州师范学院,贵州 贵阳 550018;
    4.贵州发来地农业科技有限公司,贵州 龙里 551202
刘辉,男,副研究员,主要从事作物栽培生理学和作物病害绿色防控方面的研究。

收稿日期: 2023-12-09

  修回日期: 2024-03-24

  网络出版日期: 2024-09-03

基金资助

贵州省科技支撑计划(黔科合支撑[2021]一般192、黔科合支撑[2023]一般037)、黔南州科技支撑计划(黔南科合[2022]01号)

Optimization of Culture Conditions of A Trichoderma yunnanensis and Its Control Efficiency of Tea Anthracnose

  • LIU Hui ,
  • FENG Yueling ,
  • ZHU Xiuying ,
  • ZHENG Zhouzhou ,
  • LIU Sirui ,
  • ZHOU Luona ,
  • PAN Xuezhen ,
  • SONG Li
Expand
  • 1. Institute of Biotechnology, Guizhou Academy of Agricultural Sciences/Guizhou Provincial Key Laboratory of Agricultural Biotechnology, Guiyang 550009, China;
    2. Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, China;
    3. Guizhou Education University, Guiyang 550018, China;
    4. Guizhou Falaidi Agricultural Technology Co., Ltd., Longli 551202, China

Received date: 2023-12-09

  Revised date: 2024-03-24

  Online published: 2024-09-03

摘要

为优化对茶炭疽病菌Colletotrichum camelliae有拮抗作用的云南木霉菌Trichodema yunnanense的发酵培养条件,并明确发酵液对茶炭疽病的防控效果,以对C. camelliae的抑菌率为评价指标,通过单因素和响应面试验,优化云南木霉菌的发酵条件并获得发酵液,比较其对茶炭疽病的抑菌活性、离体叶片和盆栽茶树叶片防效及茶树生长的影响。结果显示,T. yunnanense的最佳发酵条件为马铃薯200βg·L-1、甘露醇18.85βg·L-1、酵母浸膏4.73βg·L-1、装液量372.60βmL·L-1、培养温度25β℃、pH 6.6、12L∶12D。10%的发酵液对C. camelliae的抑菌率达92.61%,对感染茶炭疽病的离体茶树叶片与盆栽茶树叶片的防效分别为63.71%与68.95%,均显著高于哈茨木霉菌(T. harzianum)可湿性粉剂与多菌灵的防效。同时,10%发酵液处理后的茶树幼苗根长提升69.16%,根鲜重提升215.70%,株高增加42.13%,地上部鲜重增加212.11%。表明T. yunnanense发酵液兼具抗菌和促生作用。研究结果为T. yunnanense在茶炭疽病生物防治中的应用奠定了一定的理论基础。

本文引用格式

刘辉 , 冯月玲 , 朱秀英 , 郑周洲 , 刘思睿 , 周罗娜 , 潘雪珍 , 宋莉 . 一株云南木霉菌培养条件的优化及其对茶炭疽病的防控研究[J]. 茶叶科学, 2024 , 44(4) : 627 -638 . DOI: 10.13305/j.cnki.jts.2024.04.013

Abstract

To optimize the fermentation conditions of Trichoderma yunnanensis, which has antagonistic effect on Colletotrichum camelliae, single factor and response surface tests were performed with the inhibition rate of C. camelliae as the evaluation index. Then, the antagonistic activity, in vitro leaf control effect, indoor pot control effect, and growth effect of the fermentation broth on C. camelliae and tea plants, respectively, were determined. The results show that the optimum fermentation conditions of T. yunnanense were as follows: potato 200βg·L-1, mannitol 18.85βg·L-1, yeast extract 4.73βg·L-1, liquid content 372.60βmL·L-1, culture temperature 25β℃, pH 6.6, 12L∶12D. The inhibitory rate of the obtained fermentation broth on C. camelliae reached 92.61% under the ratio of 1∶9 mixed with potato broth (PDA) medium. The control effect of the fermentation broth on anthrax in vitro leaf was 63.71% and that on indoor potted tea plants was 68.95%, both of which were significantly higher than that of T. harzianum wettable powder and carbendazim. Compared with the water control, the growth of tea seedlings treated with fermentation solution of T. yunnensis was significantly improved, which was manifested by the increase of root length, root fresh weight, plant height and above ground fresh weight by 69.16%, 215.70%, 42.13% and 212.11% respectively. Overall, T. yunnanense fermentation liquid has both antibiotic and growth-promoting effects. The results provided a theoretical basis for the application of T. yunnanense fermentation broth in the biological control of tea anthracnose.

参考文献

[1] 罗韵. 在高质量发展视角下贵州省推动茶产业发展对策研究[J]. 贵茶, 2023(4): 1-5.
Luo Y.An analysis of strategies for promoting the development of the tea industry in Guizhou Province from a high quality development perspective[J]. Journal of Guizhou Tea, 2023(4): 1-5.
[2] Guo M, Pan Y M, Dai Y L, et al.First report of brown blight disease caused by Colletotrichum gloeosporioides on Camellia sinensis in Anhui Province, China[J]. Plant Disease, 2014, 98(2): 284. doi: 10.1094/PDIS-08-13-0896-PDN.
[3] 王玉春, 刘守安, 卢秦华, 等. 中国茶树炭疽菌属病害研究进展及展望[J]. 植物保护学报, 2019, 46(5): 954-963.
Wang Y C, Liu S A, Lu Q H, et al.Research progress and prospects of Colletotrichum species causing tea plant diseases in China[J]. Journal of Plant Protection, 2019, 46(5): 954-963.
[4] Porras M, Barrau C, Romero F.Biological control of anthracnose with Trichoderma in strawberry fields[J]. Acta Horticulturae, 2009, 842: 351-354.
[5] Rahman M A, Razvy M A, Alam M F.Antagonistic activities of Trichoderma strains against chili anthracnose pathogen[J]. International Journal of Microbiology and Mycology, 2013, 1(1): 7-22.
[6] Saber W I A, Ghoneem K M, Rashad Y M, et al. Trichoderma Harzianum WKY1: an indole acetic acid producer for growth improvement and anthracnose disease control in sorghum[J]. Biocontrol Science & Technology, 2017, 27(5): 654-676.
[7] Verma D P, Mouli B C.Scope for biofertilizers in tea cultivation in South India[J]. Planters Chronicle, 1995, 90(10): 495-497, 499.
[8] Onsando J M, Waudo S W.Interaction between Trichoderm a species and Armillaria root rot fungus of tea in Kenya[J]. International Journal of Pest Management, 1994, 40(1): 69-74.
[9] 赵兴丽, 张金峰, 周玉锋, 等. 一株拮抗茶炭疽病菌的木霉菌的分离、筛选及鉴定[J]. 茶叶科学, 2019, 39(4): 431-439.
Zhao X L, Zhang J F, Zhou Y F, et al.Isolation, screening and identification of a strain of Trichoderma antagonizing tea anthracnose[J]. Journal of Tea Science, 2019, 39(4): 431-439.
[10] 丁志雯, 胡永红, 杨文革. 木霉菌发酵培养基响应面优化[J]. 江苏农业科学, 2017, 45(23): 275-279.
Ding Z W, Hu Y H, Yang W G.Optimization of the fermentation medium of Trichoderma using response surface method[J]. Jiangsu Agricultural Sciences, 2017, 45(23): 275-279.
[11] Tariqjaveed M, Farooq T, Al-Hazmi A S, et al. Role of Trichoderma as a biocontrol agent (BCA) of phytoparasitic nematodes and plant growth inducer[J]. Journal of Invertebrate Pathology, 2021, 183: 107626. doi: 10.1016/j.jip.2021.107626.
[12] Xue M, Wang R, Zhang C Y, et al.Screening and identification of Trichoderma strains isolated from natural habitats in China with potential agricultural applications[J]. BioMed Research International, 2021, 2021: 7913950. doi: 10.1155/2021/7913950.
[13] Kumar N, Khurana S M P. Trichoderma-plant-pathogen interactions for benefit of agriculture and environment [M]//Jogaiah S. Biocontrol agents and secondary metabolites: applications and immunization for plant growth and protection. Gurgaon: Woodhead Publishing, 2021: 41-63.
[14] Silva R N, Monteiro V N, Steindorf A S, et al.Trichoderma/pathogen/plant interaction in pre-harvest food security[J]. Fungal Biology, 2019, 123(8): 565-583.
[15] Konappa N, Arakere U C, Krishnamurthy S, e al. Exploring the potential role of Trichoderma as friends of plants foes for bacterial plant pathogens [M]//Rakshit A, Meena V S, Abhilash P C, et al. Advances in bio-inoculant science. Gurgaon: Woodhead Publishing, 2021: 383-399.
[16] Asad S A.Mechanisms of action and biocontrol potential of Trichoderma against fungal plant diseases: a review[J]. Ecological Complexity, 2022, 49: 100978. doi: 10.1016/j.ecocom.2021.100978.
[17] 周罗娜, 赵兴丽, 周玉锋, 等. 拮抗茶炭疽病菌的木霉菌发酵培养基响应面优化[J]. 安徽农学通报, 2020, 26(18): 96-100, 109.
Zhou L N, Zhao X L, Zhou Y F, et al.Optimization of the fermentation medium of Trichoderma antagonistic to Colletotrichum gloeosporioides[J]. Anhui Agricultural Science Bulletin, 2020, 26(18): 96-100, 109.
[18] 冯月玲, 朱英, 毛堂芬, 等. 6%抗坏血酸水剂与0.2%苯丙烯菌酮微乳剂在茶树上的应用效果[J]. 农药, 2023, 62(9): 675-679, 683.
Feng Y L, Zhu Y, Mao T F, et al.Effect of vitamin C 6% aqueous solution and isobavachalcone 0.2% micro-emulsion on tea plant[J]. Agrochemicals, 2023, 62(9): 675-679, 683.
[19] 刘红艳, 李维, 向芬, 等. 茶炭疽病拮抗放线菌的分离筛选与鉴定[J]. 茶叶通讯, 2017, 44(4): 24-27.
Liu H Y, Li W, Xiang F, et al.Isolation, screening and identification of the antagonistic Actinomyces against Gloeosporium theaesinesis Miyake[J]. Journal of Tea Communication, 2017, 44(4): 24-27.
[20] 刘诗琪, 张金峰, 孟泽洪, 等. 一株拮抗茶炭疽病菌(Colletotrichum camelliae)的放线菌的分离及初步鉴定[J/OL]. 分子植物育种, 2023[2023-12-09]. https://link.cnki.net/urlid/46.1068.S.20230822.1406.004.
Liu S Q, Zhang J F, Meng Z H, et al. Isolation and preliminary identification of an antagonistic Actinomycetes against Colletotrichum camelliae [J]. Molecular Plant Breeding, 2023[2023-12-09]. https://link.cnki.net/urlid/46.1068.S.20230822.1406.004.
[21] 张玉丹, 谭琳, 任佐华, 等. 茶炭疽病拮抗链霉菌的筛选鉴定与拮抗能力测定[J]. 中国生物防治学报, 2023, 39(3): 646-656.
Zhang Y D, Tan L, Ren Z H, et al.Screening, identification and determination of antagonistic Actinomycetes strain against tea anthracnose[J]. Chinese Journal of Biological Control, 2023, 39(3): 646-656.
[22] 朱咏珊, 罗晓欣, 梁浩然, 等. 一株茶树根际细菌的鉴定与生防效果研究[J]. 茶叶科学, 2022, 42(1): 87-100.
Zhu Y S, Luo X X, Liang H R, et al.Identification of a tea rhizosphere bacterium and its biocontrol of tea anthracnose disease[J]. Journal of Tea Science, 2022, 42(1): 87-100.
[23] 雷丹. 巨大芽孢杆菌可湿性粉剂的研制和生防效果研究[D]. 贵阳: 贵州大学, 2022.
Lei D.Preparation of Bacillus megaterium wettable powder and study on biocontrol effect [D]. Guiyang: Guizhou University, 2022.
[24] Pan H, Xiao Y, Xie A, et al.The antibacterial mechanism of phenylacetic acid isolated from Bacillus megaterium L2 against Agrobacterium tumefaciens[J]. Microbiology, 2022, 10: e14304. doi: 10.7717/peerj.14304.
[25] Yu Z F, Qiao M, Zhang Y, et al.Two new species of Trichoderma from Yunnan, China[J]. Antonie Van Leeuwenhoek, 2007, 92(1): 101-108.
[26] Liu Y P, Xun W B, Chen L, et al.Rhizosphere microbes enhance plant salt tolerance: toward crop production in saline soil[J]. Computational and Structural Biotechnology Journal, 2022, 20: 6543-6551.
[27] 张美君, 吴庆, 尹翠, 等. 尖镰孢黄瓜专化型枯萎病菌拮抗菌的筛选、鉴定及培养条件优化[J]. 生物技术通报, 2020, 36(9): 125-136.
Zhang M J, Wu Q, Yin C, et al.Screening and identification of an antagonistic strain against Fusarium oxyporum f. sp. cucumerinum and optimization of culture conditions[J]. Biotechnology Bulletin, 2020, 36(9): 125-136.
[28] Pandey A K, Kumar A, Samota M K, et al.Trichoderma reesei as an elicitor triggers defense responses in tea plant and delays gray blight symptoms[J]. Pesticide Biochemistry and Physiology, 2022, 188: 105279. doi: 10.1016/j.pestbp.2022.105279.
[29] Phoka N, Suwannarach N, Lumyong S, et al.Role of volatiles from the endophytic fungus Trichoderma asperelloides PSU-P1 in biocontrol potential and in promoting the plant growth of Arabidopsis thaliana[J]. Journal of Fungi, 2020, 6(4): 341. doi: 10.3390/jof6040341.
[30] 申屠旭萍, 石一珺, 俞晓平. 哈茨木霉发酵产木霉素的培养条件优化[J]. 中国生物防治, 2009, 25(4): 348-354.
Shentu X P, Shi Y J, Yu X P.Optimization of conditions for production of Trichodermin by Trichoderma harzianum[J]. Chinese Journal of Biological Control, 2009, 25(4): 348-354.
[31] Yang Y, Zhang S W, Li K T.Antagonistic activity and mechanism of an isolated Streptomyces corchorusii stain AUH-1 against phytopathogenic fungi[J]. World Journal of Microbiology & Biotechnology, 2019, 35(9): 145. doi: 10.1007/s11274-019-2720-z.
[32] 周罗娜, 陈银翠, 周玉锋, 等. 一株拮抗茶炭疽病菌的木霉菌发酵液对茶树幼苗的促生作用[J]. 茶叶通讯, 2021, 48(2): 247-252.
Zhou L N, Chen Y C, Zhou Y F, et al.Growth promoting effect of Trichoderma spp. fermentation broth against tea anthracnose on tea seedlings[J]. Journal of Tea Communication, 2021, 48(2): 247-252.
文章导航

/