欢迎访问《茶叶科学》,今天是
研究报告

基于网络药理学对发花茶梗活性成分的预测分析

  • 何淏天 ,
  • 肖娟娟 ,
  • 汤依钰 ,
  • 罗密 ,
  • 刘仲华 ,
  • 禹利君
展开
  • 1.湖南农业大学茶学教育部重点实验室,湖南 长沙 410128;
    2.国家植物功能成分利用工程技术研究中心,湖南 长沙 410128;
    3.植物功能成分利用省部共建协同创新中心,湖南 长沙 410128;
    4.农业农村部园艺作物基因资源评价利用重点实验室,湖南 长沙 410128
何淏天,男,硕士研究生,主要从事茶叶加工及功能成分研究。

收稿日期: 2024-04-16

  修回日期: 2024-07-06

  网络出版日期: 2024-09-03

基金资助

湖南省科技厅重点研发计划(2024JK2153)、湖南省科技厅重大专项(2021NK1020)、湖南省高新技术产业科技创新引领计划(2021GK4019)、国家现代农业产业技术体系(CARS-19)

Prediction and Analysis of Active Components in Tea Stem Fermented Product Based on Network Pharmacology

  • HE Haotian ,
  • XIAO Juanjuan ,
  • TANG Yiyu ,
  • LUO Mi ,
  • LIU Zhonghua ,
  • YU Lijun
Expand
  • 1. Key Lab of Education Ministry of Hunan Agricultural University for Tea Science, Changsha 410128, China;
    2. National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China;
    3. Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha 410128, China;
    4. Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China

Received date: 2024-04-16

  Revised date: 2024-07-06

  Online published: 2024-09-03

摘要

茶梗对茯茶发花的感官品质产生明显影响,为探究茯茶中发花茶梗的活性成分及作用靶点,通过纯化的冠突曲霉菌LJSC.2006(GenBank accession number:MZ147020)对茶梗发花,以非靶向代谢组学(LC-MS/MS)、网络药理学进行预测分析,运用分子对接验证。基于偏最小二乘判别分析(OPLS-DA)筛选获得发花茶梗与原茶梗的非靶向代谢组学差异代谢产物295种,其中碳水化合物41种、有机酸37种、酚类及其衍生物33种、萜类化合物27种、胺类26种、含氮杂环化合物24种、酯类21种、糖苷类19种、黄酮及其衍生物15种、氨基酸及其衍生物14种、类固醇及其衍生物9种、生物碱9种、酚酸6种、香豆素及其衍生物6种、儿茶素及其衍生物1种和其他7种。网络药理学分析结果表明,发花茶梗有16个潜在活性成分,作用于248个靶点,通过蛋白质互作(PPI)筛选得到13个潜在核心靶点。根据分子对接结果,初步预测香豆雌酚、高良姜素、木犀草素和藏红花酸是发花茶梗的主要核心活性成分。EGFR、ESR1、SRC和PTGS2是发花茶梗作用的主要核心靶点。

本文引用格式

何淏天 , 肖娟娟 , 汤依钰 , 罗密 , 刘仲华 , 禹利君 . 基于网络药理学对发花茶梗活性成分的预测分析[J]. 茶叶科学, 2024 , 44(4) : 665 -682 . DOI: 10.13305/j.cnki.jts.2024.04.010

Abstract

Tea stem has a significant impact on the sensory quality for Fucha fermentation product. To explore the active ingredients and targets of tea stems in Fucha, Aspergillus cristatus LJSC.2006 (GenBank accession number: MZ147020) was used to ferment tea stem and obtain the end products. Non-targeted metabolomics (LC-MS/MS), network pharmacology, and molecular docking were used to verify the experimental results. Based on partial least squares discriminant analysis (OPLS-DA), 295 kinds of non-targeted metabolites with differential expression between the fermented tea stem and raw tea stem were identified, including 41 carbohydrates, 37 organic acids, 33 phenols and derivatives, 27 terpenoids, 26 amines, 24 nitrogen-containing heterocyclic compounds, 21 esters, 19 glyeosides, 15 flavonoids and derivatives, 14 amino acids and derivatives, 9 steroids and derivatives, 9 alkaloids, 6 phenolic acids, 6 coumarins and derivatives, 1 catechin and derivatives and 7 others. The network pharmacological analysis show that there were 16 potential active ingredients acting on 248 targets, and 13 potential central targets were obtained through Protein-Protein Interaction (PPI) screening. According to the results of molecular docking, coumestrol, galangin, luteolin and crocetin were the main central active ingredients. EGFR, ESR1, SRC and PTGS2 were the main targets of tea stem fermented by Aspergillus cristatus.

参考文献

[1] Hubka V, Kolařík M, Kubátová A, et al.Taxonomic revision of Eurotium and transfer of species to Aspergillus[J]. Mycologia, 2017, 105(4): 912-937.
[2] Xie Z, Zeng Z, Chen G, et al.Intracellular polysaccharides of Aspergillus cristatus from Fuzhuan brick tea leverage the gut microbiota and repair the intestinal barrier to ameliorate DSS-induced colitis in mice[J]. Journal of Agricultural and Food Chemistry, 2023, 71(21): 8023-8037.
[3] Liu T T, Liu X T, Huang G L, et al.Theophylline extracted from Fu brick tea affects the metabolism of preadipocytes and body fat in mice as a pancreatic lipase inhibitor[J]. International Journal of Molecular Sciences, 2022, 23(5): 2525-2546.
[4] Xie Z, Bai Y, Chen G, et al.Immunomodulatory activity of polysaccharides from the mycelium of Aspergillus cristatus, isolated from Fuzhuan brick tea, associated with the regulation of intestinal barrier function and gut microbiota[J]. Food Research International, 2022, 152: 110901-110917.
[5] 陈义, 杨转, 尹鹏, 等. 茶树新梢不同部位主要滋味物质分布规律研究[J]. 食品研究与开发, 2020, 41(13): 56-59.
Chen Y, Yang Z, Yin P, et al.Distribution of the main taste substances in different parts of tea shoots[J]. Food Research and Development, 2020, 41(13): 56-59.
[6] 宛晓春. 茶叶生物化学[M]. 3版北京: 中国农业出版社, 2016.
Wan X C.Tea Biochemistry [M]. 3rd ed. Beijing: China Agriculture Press, 2016.
[7] Shen J, Wang Y, Ding Z, et al.Metabolic analyses reveal growth characteristics of young tea shoots in spring[J]. Scientia Horticulturae, 2019, 246: 478-489.
[8] 汤依钰, 俞梦瑶, 禹利君, 等. 冠突散囊菌LJSC.2005对茯茶主体黑毛茶发花品质影响[J]. 茶叶科学, 2022, 42(6): 851-862.
Tang Y Y, Yu M Y, Yu L J, et al.Effects of Eurotium cristatum LJSC.2005 on the quality of primary dark tea, a major part of Fu tea[J]. Journal of Tea Science, 2022, 42(6): 851-862.
[9] 罗密, 俞梦瑶, 禹利君, 等. 冠突散囊菌LJSC.2001对不同黑毛茶发花品质的影响[J]. 食品科学, 2023, 44(14): 106-115.
Luo M, Yu M Y, Yu L J, et al.Effect of fermentation by Eurotium cristatum LJSC.2001 on the fermentation quality of raw dark tea made from different varieties[J]. Food Science, 2023, 44(14): 106-115.
[10] Li X, Liu Z, Liao J, et al.Network pharmacology approaches for research of traditional Chinese medicines[J]. Chinese Journal of Natural Medicines, 2023, 21(5): 323-332.
[11] Zhang S, Shan L, Li Q, et al.Systematic analysis of the multiple bioactivities of green tea through a network pharmacology approach[J]. Evidence-Based Complementary and Alternative Medicine, 2014: 512081. doi: 10.1155/2014/512081.
[12] Wu P, Liang S, He Y, et al.Network pharmacology analysis to explore mechanism of three flower tea against nonalcoholic fatty liver disease with experimental support using high-fat diet-induced rats[J]. Chinese Herbal Medicines, 2022, 14(2): 273-282.
[13] Tian F M, Yi J, Tang Y, et al.A UPLC-Q-TOF/MS and network pharmacology method to explore the mechanism of Anhua Fuzhuan tea intervention in nonalcoholic fatty liver disease[J]. Food & Function, 2023, 14(8): 3686-3700.
[14] Xiang X, You S, Zeng Z, et al.Exploration of the hypoglycemic mechanism of Fuzhuan brick tea based on integrating global metabolomics and network pharmacology analysis[J]. Frontiers in Molecular Biosciences, 2024, 10: 1-12. doi: 10.3389/fmolb.2023.1266156.
[15] Xu S, Zhou Y, Yu L, et al.Protective effect of Eurotium cristatum fermented loose dark tea and Eurotium cristatum particle on MAPK and PXR/AhR signaling pathways induced by electronic cigarette exposure in mice[J]. Nutrients, 2022, 14(14): 2843-2860.
[16] Want E J, Masson P, Michopoulos F, et al.Global metabolic profiling of animal and human tissues via UPLC-MS[J]. Nature Protocols, 2012, 8(1): 17-32.
[17] Lipinski C A, Lombardo F, Dominy B W, et al.Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings[J]. Advanced Drug Delivery Reviews, 2012, 64: 4-17. doi: 10.1016/jaddr.2012.09.019.
[18] Oprea T I.Property distribution of drug-related chemical databases[J]. Journal of Computer-Aided Molecular Design, 2000, 14(3): 251-264.
[19] Daina A, Michielin O, Zoete V.Swiss target prediction: updated data and new features for efficient prediction of protein targets of small molecules[J]. Nucleic Acids Research, 2019, 47(1): 357-364.
[20] Du A, Zheng R, Disoma C, et al.Epigallocatechin-3-gallate, an active ingredient of traditional Chinese medicines, inhibits the 3CLpro activity of SARS-CoV-2[J]. International Journal of Biological Macromolecules, 2021, 176: 1-12. doi: 10.1016/j.ijbiomac.2021.02.012.
[21] Xiao Y, He C, Chen Y, et al.UPLC-QQQ-MS/MS-based widely targeted metabolomic analysis reveals the effect of solid-state fermentation with Eurotium cristatum on the dynamic changes in the metabolite profile of dark tea[J]. Food Chemistry, 2022, 378: 131999-132005. doi: 10.1016/jfoodchem.2021.131999.
[22] Li Q, Jin Y, Jiang R, et al.Dynamic changes in the metabolite profile and taste characteristics of Fu brick tea during the manufacturing process[J]. Food Chemistry, 2021, 344: 128576-128607. doi: 10.1016/jfoodchem.2020.128576.
[23] Xiang M, Chu J, Cai W, et al.Microbial succession and interactions during the manufacture of Fu brick tea[J]. Frontiers in Microbiology, 2022, 13: 892437-892448. doi: 10.3389/fmicb.2022.892437.
[24] Miksicek R J.In situ localization of the estrogen receptor in living cells with the fluorescent phytoestrogen coumestrol[J]. The Joumal of Histochemistry and Cytochemistry, 1993, 41(6): 801-810.
[25] Park S, Sim K S, Heo W, et al.Protective effects of coumestrol on metabolic dysfunction and its estrogen receptor-mediated action in ovariectomized mice[J]. Nutrients, 2023, 15(4): 954-966.
[26] Zafar A, Ahmad S, Naseem I.Insight into the structural stability of coumestrol with human estrogen receptor α and β subtypes: a combined approach involving docking and molecular dynamics simulation studies[J]. RSC Advances, 2015, 5(99): 81295-81312.
[27] 周文静, 张萌, 周荣荣, 等. 基于网络药理学探讨“黄芪-当归-大枣”角药补气养血的分子机制[J]. 世界科学技术-中医药现代化, 2020, 22(5): 1725-1733.
Zhou W J, Zhang M, Zhou R R, et al.Study on the molecular mechanism of “astragalus-angelica-jujube” triangular drugson tonifying qi and nourishing blood based on network pharmacology[J]. World Science and Technology-Modernization of Traditional Chinese Medicine and Materia Medica, 2020, 22(5): 1725-1733.
[28] Wang D, Chen J, Pu L, et al.Galangin: a food-derived flavonoid with therapeutic potential against a wide spectrum of diseases[J]. Phytotherapy Research, 2023, 37(12): 5700-5723.
[29] Zhang F, Yan Y, Zhang L M, et al.Pharmacological activities and therapeutic potential of galangin, a promising natural flavone, in age-related diseases[J]. Phytomedicine, 2023, 120: 155061-155076. doi: 10.1016/j.phymed.2023.155061.
[30] 沈存思, 杨福州, 项莹颖, 等. 中药活性化合物高良姜素与吉非替尼抗非小细胞肺癌的协同增效作用及机制研究[J]. 南京中医药大学学报, 2021, 37(1): 72-76.
Shen C S, Yang F Z, Xiang Y Y, et al.Study on the synergistic effect and mechanism of traditional Chinese medicine active compound galangin and gefitinib on non-small cell lung cancer[J]. Journal of Nanjing University of Traditional Chinese Medicine, 2021, 37(1): 72-76.
[31] Yang C C, Lin C C, Hsiao L D, et al.Galangin inhibits thrombin-induced MMP-9 expression in SK-N-SH cells via protein kinase-dependent NF-κB phosphorylation[J]. International Journal of Molecular Sciences, 2018, 19(12): 4084-5102.
[32] Lu H, Yao H, Zou R, et al.Galangin suppresses renal inflammation via the inhibition of NF-κB, PI3K/AKT and NLRP3 in uric acid treated NRK-52E tubular epithelial cells[J]. BioMed Research International, 2019: 3018357. doi:10.1155/2019/3018357.
[33] Punia Bangar S, Kajla P, Chaudhary V, et al.Luteolin: a flavone with myriads of bioactivities and food applications[J]. Food Bioscience, 2023, 52: 102366-102380. doi: 10.1016/j.fbio.2023.102366.
[34] Huang X F, Zhang J L, Huang D P, et al.A network pharmacology strategy to investigate the anti-inflammatory mechanism of luteolin combined with in vitro transcriptomics and proteomics[J]. International Immunopharmacology, 2020, 86: 106727-106740. doi:10.1016/j.intimp.2020.106727.
[35] Yu Y, Ding S, Xu X, et al.Integrating network pharmacology and bioinformatics to explore the effects of dangshen (Codonopsis pilosula) against hepatocellular carcinoma: validation based on the active compound luteolin[J]. Drug Design, Development and Therapy, 2023, 17: 659-673. doi: 10.2147/dddt.S386941.
[36] Wang M, Gu W, Kui F, et al.The clinical efficiency and the mechanism of sanzi yangqin decoction for chronic obstructive pulmonary disease[J]. Evidence-Based Complementary and Alternative Medicine, 2021: 5565562. doi: 10.1155/2021/5565562.
[37] Butnariu M, Quispe C, Herrera-Bravo J, et al.The pharmacological activities of Crocus sativus L.: a review based on the mechanisms and therapeutic opportunities of its phytoconstituents[J]. Oxidative Medicine and Cellular Longevity, 2022: 8214821. doi: 10.1155/2022/8214821.
[38] Zheng Y, Zhu N, Wang J, et al.Crocetin suppresses gestational diabetes in streptozotocin-induced diabetes mellitus rats via suppression of inflammatory reaction[J]. Journal of Food Biochemistry, 2021, 45(9): 13857-13868.
[39] Cui L M, Zhang M J, Wang X J, et al.Inhibitory effect of saffron on head and neck squamous cell carcinoma via targeting of ESR1 and CCND1 by its active compound crocetin[J]. Traditional Medicine Research, 2024, 9(7): 39-49.
[40] Mohan C D, Kim C, Siveen K S, et al.Crocetin imparts antiproliferative activity via inhibiting STAT3 signaling in hepatocellular carcinoma[J]. IUBMB Life, 2021, 73(11): 1348-1362.
文章导航

/