欢迎访问《茶叶科学》,今天是
综述

康普茶细菌纤维素的形成途径及其在废弃茶叶资源高效利用中的应用

  • 徐晴晴 ,
  • 聂晴 ,
  • 刘助生 ,
  • 郭青 ,
  • 刘仲华 ,
  • 蔡淑娴
展开
  • 1.国家植物功能成分利用工程技术研究中心,湖南 长沙 410128;
    2.广西壮族自治区茶叶科学研究所,广西 桂林 541004;
    3.湖南农业大学茶学教育部重点实验室,湖南 长沙 410128
徐晴晴,女,本科,主要从事茶叶资源高值化利用方面的研究。

收稿日期: 2024-06-19

  修回日期: 2024-07-22

  网络出版日期: 2024-11-08

基金资助

广西创新驱动发展专项资金项目(AA20302018)、国家重点研发计划(2018YFC1604405)、国家自然科学基金(31471590、31100501)

Review on the Formation Pathway of Kombucha Bacterial Cellulose and Its Application in Efficient Utilization of Tea Waste

  • XU Qingqing ,
  • NIE Qing ,
  • LIU Zhusheng ,
  • GUO Qing ,
  • LIU Zhonghua ,
  • CAI Shuxian
Expand
  • 1. National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China;
    2. Guangxi Research Institute of Tea Science, Guilin 541004, China;
    3. Key Lab of Education Ministry of Hunan Agricultural University for Tea Science, Changsha 410128, China

Received date: 2024-06-19

  Revised date: 2024-07-22

  Online published: 2024-11-08

摘要

废弃茶叶资源和夏秋茶用于生产康普茶和细菌纤维素,不仅有助于减少环境污染和资源浪费,还能开发高市场价值的产品。细菌纤维素作为一种高晶度、可再生的多糖,广泛应用于生物医疗、环保包装、纺织、新能源电池、护肤品等领域。综述了近年来细菌纤维素膜的应用研究,重点分析了不同发酵环境和茶叶种类对细菌纤维素膜品质的影响,证实了通过调整发酵参数可获得具有特定结晶结构的纤维素。进一步探讨了茶叶成分在菌膜形成中的作用,并提出了提高康普茶细菌纤维素膜产量和质量的新思路。文章强调了康普茶细菌纤维素膜的保健功效及其在可持续产品开发中的重要作用,并指出了进一步研究以促进其工业化应用的必要性。

本文引用格式

徐晴晴 , 聂晴 , 刘助生 , 郭青 , 刘仲华 , 蔡淑娴 . 康普茶细菌纤维素的形成途径及其在废弃茶叶资源高效利用中的应用[J]. 茶叶科学, 2024 , 44(5) : 707 -717 . DOI: 10.13305/j.cnki.jts.2024.05.001

Abstract

Tea waste and summer-autumn tea can be used to produce Kombucha and bacterial cellulose, helping to reduce environmental pollution and resource waste while developing high market value products. Bacterial cellulose, as a highly crystalline and sustainably renewable polysaccharide, has a wide range of potential applications in biomedicine, eco-friendly packaging, textiles, new energy batteries, skincare products, and other fields. This paper reviewed recent research on the applications of bacterial cellulose membranes, focusing on the effects of different fermentation environments and tea types on the quality of bacterial cellulose membranes. It confirmed that adjusting fermentation parameters can produce cellulose with specific crystalline structures. The paper also discussed the role of tea components in the formation of bacterial cellulose membranes and proposed new ideas for improving the yield and quality of Kombucha bacterial cellulose membranes. The health benefits of Kombucha bacterial cellulose membranes and their significant role in sustainable product development were emphasized. The paper highlighted the need for further research to promote their industrial application.

参考文献

[1] Liu Y, Li X, Shi L, et al. Analysis of polysaccharide structure involves separating homologous polysaccharides, drawing elution curve, measuring purity and molecular weight of polysaccharide in segmented homologous polysaccharide group, determining structure, glycosidic bonds and functional groups of each polysaccharide: CN117990732-A [P].2024-05-07[2024-06-19].
[2] 张妍. 红茶菌发酵产细菌纤维素工艺及其性能研究[D]. 哈尔滨: 哈尔滨商业大学, 2013.
Zhang Y.Study on the process and characterization of bacterial cellulose producted by Kombucha [D]. Harbin: Harbin University of Commerce, 2013.
[3] Görgüç A, Gençdag E, Yilmaz F M.Bioactive peptides derived from plant origin by-products: biological activities and techno-functional utilizations in food developments: a review[J]. Food Research International, 2020, 136: 109504. doi: 10.1016/j.foodres.2020.109504.
[4] Wang B Y, Rutherfurd-Markwick K, Zhang X X, et al.Kombucha: production and microbiological research[J]. Foods, 2022, 11(21): 3456. doi: 10.3390/foods11213456.
[5] 蒋立文. 红茶菌优势微生物的分离、鉴定及抗菌机理的研究[D]. 长沙: 湖南农业大学, 2007.
Jiang L W.Studies on isolation and identification of predominant microbes from Kombucha and their anti-microbes mechanism [D]. Changsha: Hunan Agricultural University, 2007.
[6] Behera B, Laavanya D, Balasubramanian P.Techno-economic feasibility assessment of bacterial cellulose biofilm production during the Kombucha fermentation process[J]. Bioresource Technology, 2022, 346: 126659. doi: 10.1016/j.biortech.2021.126659.
[7] Devanthi P V P, Kho K, Nurdiansyah R, et al. Do Kombucha symbiotic cultures of bacteria and yeast affect bacterial cellulose yield in molasses?[J]. Journal of Fungi, 2021, 7(9): 705.doi: 10.3390/jof7090705.
[8] Esa F, Tasirin S M, Rahman N A.Overview of bacterial cellulose production and application[J]. Agriculture and Agricultural Science Procedia, 2014, 2: 113-119.
[9] Dufresne C, Farnworth E. Tea, Kombucha,health: a review[J]. Food Research International, 2000, 33(6) : 409-421.
[10] 吴薇, 盖宝川, 籍保平. 红茶菌菌种主要代谢产物的试验研究[J]. 食品科学, 2004, 25(12): 147-151.
Wu W, Gai B C, Ji B P.D-glucaric acid and other metabolites in Kombucha[J]. Food Science, 2004, 25(12): 147-151.
[11] Villarreal-Soto S A, Beaufort S, Bouajila J, et al. Understanding Kombucha tea fermentation: a review[J]. Journal of Food Science, 2018, 83(3): 580-588.
[12] 唐水佳, 杨雪霞, 洪枫. 红茶菌制备细菌纤维素的研究[J]. 纤维素科学与技术, 2012, 20(2): 40-45.
Tang S J, Yang X X, Hong F.Production of bacterial cellulose by Kombucha[J]. Journal of Cellulose Science and Technology, 2012, 20(2): 40-45.
[13] Savary O, Mounier J, Thierry A, et al.Tailor-made microbial consortium for Kombucha fermentation: microbiota-induced biochemical changes and biofilm formation[J]. Food Research International, 2021, 147: 110549. doi: 10.1016/j.foodres.2021.110549.
[14] Laavanya D, Shirkole S, Balasubramanian P.Current challenges, applications and future perspectives of SCOBY cellulose of Kombucha fermentation[J]. Journal of Cleaner Production, 2021, 295: 126454. doi: 10.1016/j.jclepro.2021.126454.
[15] 余瞻, 赵福权, 徐成龙, 等. 红茶菌中细菌纤维素产生菌的筛选、鉴定及其发酵动力学模型构建[J]. 食品与发酵工业, 2021, 47(6): 92-98.
Yu Z, Zhao F Q, Xu C L, et al.Screening, identification of bacterial cellulose producing bacteria and establishment of fermentation kinetics[J]. Food and Fermentation Industries, 2021, 47(6): 92-98.
[16] Chakravorty S, Bhattacharya S, Chatzinotas A, et al.Kombucha tea fermentation: microbial and biochemical dynamics[J]. International Journal of Food Microbiology, 2016, 220: 63-72.
[17] 吕橄, 赵文韬, 龚建萍, 等. 细菌纤维素在食品工业中的应用研究进展[J]. 现代食品, 2021(16): 23-28.
Lü K, Zhao W T, Gong J P, et al.Research progress on the application of bacterial cellulose in food industry[J]. Modern Food, 2021(16): 23-28.
[18] Semjonovs P, Ruklisha M, Paegle L, et al.Cellulose synthesis by Komagataeibacter rhaeticus strain P1463 isolated from Kombucha[J]. Applied Microbiology and Biotechnology, 2017, 101(3): 1003-1012.
[19] Emiljanowicz K E, Malinowska-Panczyk E.Kombucha from alternative raw materials: the review[J]. Critical Reviews in Food Science and Nutrition, 2020, 60(19): 3185-3194.
[20] AlKalifawi I, Hassan A A. Factors influence on the yield of bacterial cellulose of Kombucha (Khubdat Humza)[J]. Baghdad Science Journal, 2014, 11(3): 1420-1428.
[21] Balasubramanian P, Praharaj P T.Principal component analysis revealed the key influencing factors of kombucha bacterial cellulose yield and productivity[J]. Bioresource Technology Reports, 2023, 23: 101539. doi: 10.1016/j.biteb.2023.101539.
[22] Neera, Ramana K V, Batra H V. Occurrence of Cellulose-Producing Gluconacetobacter spp. in Fruit Samples and Kombucha tea, and production of the biopolymer[J]. Applied Biochemistry and Biotechnology, 2015, 176(4): 1162-1173.
[23] Yim S M, Song J E, Kim H R.Production and characterization of bacterial cellulose fabrics by nitrogen sources of tea and carbon sources of sugar[J]. Process Biochemistry, 2017, 59: 26-36.
[24] Sharma C, Bhardwaj N K.Biotransformation of fermented black tea into bacterial nanocellulose via symbiotic interplay of microorganisms[J]. International Journal of Biological Macromolecules, 2019, 132: 166-177.
[25] Ramirez Tapias Y A, Di Monte M V, Peltzer M A, et al. Bacterial cellulose films production by Kombucha symbiotic community cultured on different herbal infusions[J]. Food Chemistry, 2022, 372: 131346. doi:10.1016/j.foodchem.2021.131346.
[26] Mahmoud F, Haines D, Al-Ozairi E, et al.Effect of black tea consumption on intracellular cytokines, regulatory T cells and metabolic biomarkers in type 2 diabetes patients[J]. Phytotherapy Research, 2016, 30(3): 454-462.
[27] Gargey I A, Indira D, Jayabalan R, et al.Optimization of etherification reactions for recycling of tea fungal biomass waste into Carboxymethylcellulose[M]//Drück H, Pillai R G, Tharian M G, et al. Green buildings and sustainable engineering. Singapore: Springer Singapore, 2019.
[28] Zhou D D, Saimaiti A, Luo M, et al.Fermentation with tea residues enhances antioxidant activities and polyphenol contents in Kombucha beverages[J]. Antioxidants, 2022, 11(1): 115.doi: 10.3390/antiox11010155.
[29] 李昊燃. 红茶菌中细菌纤维素产生菌的筛选鉴定及发酵条件优化[D]. 开封: 河南大学, 2016.
Li H R.Screening and identification of a strain producing bacterial cellolose from Kombucha and purification of fermentation process [D]. Kaifeng: Henan University, 2016.
[30] 蒋立文, 刘德华, 廖卢燕, 等. 红茶菌发酵过程中主要化学成分变化的研究[J]. 食品科学, 2007, 28(3): 238-240.
Jiang L W, Liu D H, Liao L Y, et al.Study on changes in major components during tea fungus fermentation[J]. Food Science, 2007, 28(3): 238-240.
[31] Tang H R, Covington A D, Hancock R A.Structure-activity relationships in the hydrophobic interactions of polyphenols with cellulose and collagen[J]. Biopolymers, 2003, 70(3): 403-413.
[32] Phan A D T, Netzel G, Wang D, et al. Binding of dietary polyphenols to cellulose: structural and nutritional aspects[J]. Food Chemistry, 2015, 171: 388-396.
[33] Tran T, Grandvalet C, Winckler P, et al.Shedding light on the formation and structure of Kombucha biofilm using two-photon fluorescence microscopy[J]. Frontiers in Microbiology, 2021, 12: 725379. doi: 10.3389/fmicb.2021.725379.
[34] 张慧霞. 红茶菌微生物的分离及其代谢的初步研究[D]. 福州: 福建师范大学, 2019.
Zhang H X.Isolation and metabolism of Kombucha microorganisms [D]. Fuzhou: Fujian Normal University, 2019.
[35] Balentine D A, Wiseman S A, Bouwens L C M. The chemistry of tea flavonoids[J]. Critical Reviews in Food Science and Nutrition, 1997, 37(8): 693-704.
[36] Tran T, Verdier F, Martin A, et al.Oxygen management during kombucha production: roles of the matrix, microbial activity, and process parameters[J]. Food Microbiology, 2022, 105: 104024. doi: 10.1016/j.fm.2022.104024.
[37] Fontana J D, Franco V C, Desouza S J, et al.Nature of plant stimulators in the production of Acetobacter xylinum (tea fungus) biofilm used in skin therapy[J]. Applied Biochemistry and Biotechnology, 1991, 28: 341-351.
[38] Serra D O, Mika F, Richter A M, et al.The green tea polyphenol EGCG inhibits E. coli biofilm formation by impairing amyloid curli fibre assembly and downregulating the biofilm regulator CsgD via the σE-dependent sRNA RybB[J]. Molecular Microbiology, 2016, 101(1): 136-151.
[39] Zhao T, Chen Z Z, Lin X R, et al.Preparation and characterization of microcrystalline cellulose (MCC) from tea waste[J]. Carbohydrate Polymers, 2018, 184: 164-170.
[40] 王奕, 杨娟, 杨海滨, 等. 基于实地与网络调查的夏秋茶产业发展现状及建议[J]. 南方农业, 2023, 17(13): 194-199.
Wang Y, Yang J, Yang H B, et al.Development status and suggestions of summer and autumn tea industry based on offline and online surveys[J]. South China Agriculture, 2023, 17(13): 194-199.
[41] Zheng Q M, Han C Y, Zhong Y M, et al.Effects of dietary supplementation with green tea waste on growth, digestive enzyme and lipid metabolism of juvenile hybrid tilapia, Oreochromis niloticus×O. aureus[J]. Fish Physiology and Biochemistry, 2017, 43(2) : 361-371.
[42] Sudheer B A, Ramakrishna C, Raju S, et al.Evaluation of tea waste or tea residue, orange peels and pigeon pea pods for proximate composition, fodder quality and digestibility parameters[J]. The Pharma Innovation Journal, 2022, 11(11): 1441-1445.
[43] Balcı-Torun F, Özdemir K S, Mavuş R, et al.Determination of cream formation conditions and its composition during production of concentrated tea extract from black tea manufacturing wastes[J]. The Journal of Food, 2021, 46(2): 339-350.
[44] Ho K K H Y, Haufe T C, Ferruzzi M G, et al. Production and polyphenolic composition of tea[J]. Nutrition Today, 2018, 53(6): 268-278.
[45] Hamed D A, Maghrawy H H, Abdel Kareem H.Biosynthesis of bacterial cellulose nanofibrils in black tea media by a symbiotic culture of bacteria and yeast isolated from commercial kombucha beverage[J]. World Journal of Microbiology and Biotechnology, 2022, 39(2): 48. doi: 10.1007/s11274-022-03485-0.
[46] Hussain Z, Sajjad W, Khan T, et al.Production of bacterial cellulose from industrial wastes: a review[J]. Cellulose, 2019, 26(5): 2895-2911.
[47] Hegde S, Bhadri G, Narsapur K, et al.Statistical optimization of medium components by response surface methodology for enhanced production of bacterial cellulose by Gluconacetobacter persimmonis[J]. Journal of Bioprocessing & Biotechniques, 2013, 4: 142. doi: 10.4172/2155-9821.1000142.
[48] Padmanabhan S K, Lamanna L, Friuli M, et al.Carboxymethylcellulose-based hydrogel obtained from bacterial cellulose[J]. Molecules, 2023, 28(2): 829. doi: 10.3390/molecules28020829.
[49] Amarasekara A S, Wang D, Grady T L.A comparison of kombucha SCOBY bacterial cellulose purification methods[J]. Discover Applied Sciences, 2020, 2: 240. doi: 10.1007/s42452-020-1982-2.
[50] Dima S O, Panaitescu D M, Orban C, et al.Bacterial nanocellulose from side-streams of Kombucha beverages production: preparation and physical-chemical properties[J]. Polymers, 2017, 9(8): 374. doi: 10.3390/polym9080374.
[51] Knöller A, Widenmeyer M, Bill J, et al.Fast-growing bacterial cellulose with outstanding mechanical properties via cross-linking by multivalent ions[J]. Materials, 2020, 13(12): 2838. doi: 10.3390/ma13122838.
[52] Tapias Y A R, Peltzer M A, Delgado J F, et al. Kombucha tea byproduct as source of novel materials: formulation and characterization of films[J]. Food and Bioprocess Technology, 2020, 13: 1166-1180.
[53] Kamiński K, Jarosz M, Grudzień J, et al.Hydrogel bacterial cellulose: a path to improved materials for new eco-friendly textiles[J]. Cellulose, 2020, 27: 5353-5365.
[54] Zhou X Y, Liu X L, Wang Q, et al.Antimicrobial and antioxidant films formed by bacterial cellulose, chitosan and tea polyphenol: shelf life extension of grass carp[J]. Food Packaging and Shelf Life, 2022, 33: 100866. doi: 10.1016/j.fpsl.2022.100866.
[55] Betlej I, Salerno-Kochan R, Krajewski K, et al.The influence of culture medium components on the physical and mechanical properties of cellulose synthesized by Kombucha microorganisms[J]. Bioresources, 2020, 15(2): 3125-3135.
[56] Oliver-Ortega H, Geng S, Espinach F X, et al.Bacterial cellulose network from Kombucha fermentation impregnated with emulsion-polymerized poly (methyl methacrylate) to form nanocomposite[J]. 2021, 13(4): 664. doi: 10.3390/polym13040664.
[57] Agüero A, Lascano D, Ivorra-Martinez J, et al.Use of bacterial cellulose obtained from kombucha fermentation in spent coffee grounds for active composites based on PLA and maleinized linseed oil[J]. Industrial Crops and Products, 2023, 202: 116971. doi: 10.1016/j.indcrop.2023.116971.
[58] Zhang X X, Xu J, Zhang Z J, et al.Pb(II) adsorption properties of a three-dimensional porous bacterial cellulose/graphene oxide composite hydrogel subjected to ultrasonic treatment[J]. Materials, 2024, 17(13): 3053. doi: 10.3390/ma17133053.
[59] Julia M M R, Rubí E R Q, Juan P H R, et al. Production and characterization of biocomposite films of bacterial cellulose from Kombucha and coated with chitosan[J]. Polymers, 2022, 14(17): 3632. doi: 10.3390/polym14173632.
[60] Priyadharshini T, Nageshwari K, Vimaladhasan S, et al.Machine learning prediction of SCOBY cellulose yield from Kombucha tea fermentation[J]. Bioresource Technology Reports, 2022, 18: 101027. doi: 10.1016/j.biteb.2022.101027.
[61] 张秀伶, 王稳航. 纳米纤维素研究及在食品工业中的应用前景[J]. 食品工业科技, 2016, 37(21): 377-382.
Zhang X L, Wang W H.Study on nano-cellulose and its application prospect in food industry[J]. Science and Technology of Food Industry, 2016, 37(21): 377-382.
[62] 张艳, 张丽薇, 张金叶, 等. 红茶菌类产品的研究进展[J]. 现代食品, 2017(20): 44-46.
Zhang Y, Zhang L W, Zhang J Y, et al.The research progress of Kombucha's products[J]. Modern Food, 2017(20): 44-46.
[63] Okiyama A, Yamanaka S, Takehisa F.Effect of bacterial cellulose on fecal excretion and transit time in rats[J]. Journal of Japanese Society of Nutrition and Food Science, 1993, 46(2): 155-159.
[64] Hagiwara A, Imai N, Sano M, et al.A 28-day oral toxicity study of fermentation-derived cellulose, produced by Acetobacter aceti subspecies xylinum[J]. The Journal of Toxicological Sciences, 2010, 35(3): 317-325.
[65] Xu C, Ma X, Chen S W, et al.Bacterial cellulose membranes used as artificial substitutes for dural defection in rabbits[J]. 2014, 15(6): 10855-10867.
[66] Chau C F, Yang P, Yu C M, et al.Investigation on the lipid- and cholesterol-lowering abilities of biocellulose[J]. Journal of Agricultural and Food Chemistry, 2008, 56(6): 2291-2295.
[67] Lin D H, Liu Z, Shen R, et al.Bacterial cellulose in food industry: current research and future prospects[J]. International Journal of Biological Macromolecules, 2020, 158: 1007-1019.
[68] Garcia-Diez F, Garcia-Mediavilla V, Bayon J E, et al.Pectin feeding influences fecal bile acid excretion, hepatic bile acid and cholesterol synthesis and serum cholesterol in rats[J]. Journal of Nutrition, 1996, 126: 1766-1771.
[69] Lairon D.Dietary fibres and dietary lipids[M]//McCleary B V, Prosky L. Advanced dietary fibre technology. Malden City: Blackwell Science Ltd., 2001.
[70] Zhai X C, Lin D H, Zhao Y, et al.Effects of dietary fiber supplementation on fatty acid metabolism and intestinal microbiota diversity in C57BL/6J mice fed with a high-fat diet[J]. Journal of Agricultural and Food Chemistry, 2018, 66(48): 12706-12718.
[71] Zhai X C, Lin D H, Zhao Y, et al.Bacterial cellulose relieves diphenoxylate-induced constipation in rats[J]. Journal of Agricultural and Food Chemistry, 2018, 66(16): 4106-4117.
[72] Zhang L L, Zhang W, Peng F B, et al.Effects of bacterial cellulose on glucose metabolism in an in vitro chyme model and its rheological evaluation[J]. International Journal of Food Science & Technology, 2021, 56(11): 6100-6112.
[73] Mikkelsen D, Gidley M J, Williams B A.In vitro fermentation of bacterial cellulose composites as model dietary fibers[J]. Journal of Agricultural and Food Chemistry, 2011, 59(8): 4025-4032.
[74] Avcioglu N H B M, Bilkay I S. Optimization and physicochemical characterization of enhanced microbial cellulose production with a new Kombucha consortium[J]. Process Biochemistry, 2021, 108: 61-67.
[75] 朱昌来, 李峰, 尤庆生, 等. 纳米细菌纤维素的制备及其超微结构镜观察[J]. 生物医学工程研究, 2008, 27(4): 287-290.
Zhu C L, Li F, You Q S, et al.Preparation of nanometer biomaterial bacterial cellulose and observation of its ultra-structure[J]. Journal of Biomedical Engineering Research, 2008, 27(4): 287-290.
[76] 胡晨, 唐义权. 细菌纤维素在眼科等医学领域的研究与展望[J]. 合成材料老化与应用, 2021, 50(5): 178-180.
Hu C, Tang Y Q.Research and prospect of bacterial cellulose in the field of ophthalmology[J]. Synthetic Materials Aging and Application, 2021, 50(5): 178-180.
[77] Czaja W, Krystynowicz A, Bielecki S, et al.Microbial cellulose: the natural power to heal wounds[J]. Biomaterials, 2006, 27(2): 145-151.
[78] Aduri P, Rao K A, Fatima A, et al.Study of biodegradable packaging material produced from scoby[J]. Research Journal of Life Sciences, Bioinformatics, Pharmaceutical and Chemical Sciences, 2019, 5(3): 389. doi: 10.26479/2019.0503.32.
[79] Khorasani A C, Shojaosadati S A.Bacterial nanocellulose-pectin bionanocomposites as prebiotics against drying and gastrointestinal condition[J]. International Journal of Biological Macromolecules, 2016, 83: 9-18.
[80] 蒋高鹏. 基于细菌纤维素的质子交换膜的制备、表征及其在燃料电池中的应用研究[D]. 上海: 东华大学, 2012.
Jiang G P.Preparation, characterization of proton exchange membranes based on bacterial cellulose and their application in fuel cells [D]. Shanghai: Donghua Univversity, 2012.
[81] 刘玉智, 李景超, 陈立宗, 等. 细菌纤维素在造纸行业中的研究与应用进展[J]. 山东化工, 2019, 48(22) : 55, 57.
Liu Y Z, Li J C, Chen L Z, et al. Research and application progress of bacterial cellulose in the field of papermaking [J]. Shandong Chemical Industry, 2019, 48(22): 55, 57.
[82] Aung T, Kim M J.A comprehensive review on kombucha biofilms: a promising candidate for sustainable food product development[J]. Trends in Food Science & Technology, 2024, 144: 104325.doi: 10.1016/j.tifs.2024.104325.
文章导航

/