欢迎访问《茶叶科学》,今天是
研究报告

茶树果胶甲酯酶及其抑制子家族基因的鉴定及CsPME55参与氟胁迫响应的功能分析

  • 徐文鸾 ,
  • 温晓菊 ,
  • 贾雨轩 ,
  • 倪德江 ,
  • 王明乐 ,
  • 陈玉琼
展开
  • 华中农业大学园艺林学学院,果蔬园艺作物种质创新与利用全国重点实验室,湖北 武汉 430070
徐文鸾,女,博士研究生,主要从事茶树分子生理与品质调控方面的研究。

收稿日期: 2024-10-29

  修回日期: 2024-11-20

  网络出版日期: 2025-01-08

基金资助

国家自然科学基金项目(31470691)

Identification of Pectin Methylesterase and Its Inhibitory Subfamily Genes, and Functional Analysis of CsPME55 in Response to Fluoride Stress in Camellia sinensis

  • XU Wenluan ,
  • WEN Xiaoju ,
  • JIA Yuxuan ,
  • NI Dejiang ,
  • WANG Mingle ,
  • CHEN Yuqiong
Expand
  • National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China

Received date: 2024-10-29

  Revised date: 2024-11-20

  Online published: 2025-01-08

摘要

茶树(Camellia sinensis)具有氟(Fluoride,F)富集特性,且F主要富集在细胞壁组分的果胶中;果胶甲酯酶(Pectin methylesterase,PME)及其抑制子PMEI(Pectin methylesterase inhibitor)能够催化果胶的修饰进而影响细胞壁特性,参与植物生长发育、逆境响应等过程。从茶树舒茶早基因组中鉴定了85个CsPMEs和56个CsPMEIs成员,分别包括4个和5个亚族;不同亚族可能因基因结构、保守基序和表达模式等不同呈现功能分化。荧光定量结果表明,CsPME3aCsPME55CsPMEI1CsPMEI3在福鼎大白茶成熟叶中被F处理显著诱导表达。此外,过表达CsPME55缓解了F胁迫对拟南芥根系生长的抑制作用,推测CsPME55可能参与茶树F胁迫调控,研究结果将为进一步研究PMEPMEI家族基因参与F响应的功能奠定基础。

本文引用格式

徐文鸾 , 温晓菊 , 贾雨轩 , 倪德江 , 王明乐 , 陈玉琼 . 茶树果胶甲酯酶及其抑制子家族基因的鉴定及CsPME55参与氟胁迫响应的功能分析[J]. 茶叶科学, 2024 , 44(6) : 869 -886 . DOI: 10.13305/j.cnki.jts.2024.06.008

Abstract

Tea plant (Camellia sinensis) has fluoride (F) enrichment characteristics, and F is mainly enriched in the cell wall component pectin. Pectin methylsterase (PME) and its inhibitor PMEI can catalyze the modification of pectin, thereby affecting cell wall characteristics and participating in the regulation of processes like plant growth and development, stress response and so on. In this study, 85 CsPMEs and 56 CsPMEIs were identified from the C. sinensis ‘Shuchazao’ genome, which were divided into 4 and 5 subgroups, respectively. Distinct subgroups may exhibit functional distinction due to varied gene architectures, conserved motifs and expression patterns. Quantitative real-time PCR (qRT-PCR) analysis reveals that the expression levels of CsPME3a, CsPME55, CsPMEI1 and CsPMEI3 were significantly induced in the mature leaves of ‘Fuding Dabaicha’ under F treatment. Moreover, overexpression of CsPME55 alleviated Arabidopsis root growth inhibition induced by F stress, suggesting its potential role in F stress regulation in tea plants. These findings could pave the way for further research on the functional involvement of PME and PMEI gene families in F response.

参考文献

[1] Shu W S, Zhang Z Q, Lan C Y, et al.Fluoride and aluminium concentrations of tea plants and tea products from Sichuan province, PR China[J]. Chemosphere, 2003, 52(9): 1475-1482.
[2] Cai H M, Zhu X H, Peng C Y, et al.Critical factors determining fluoride concentration in tea leaves produced from Anhui province, China[J]. Ecotoxicology and Environmental Safety, 2016, 131: 14-21.
[3] Das S, de Oliveira L M, da Silva E, et al. Fluoride concentrations in traditional and herbal teas: health risk assessment[J]. Environmental Pollution, 2017, 231: 779-784.
[4] Barbier O, Arreola-Mendoza L, Del Razo L M. Molecular mechanisms of fluoride toxicity[J]. Chemico-Biological Interactions, 2010, 188(2): 319-333.
[5] Luo J L, Hu K, Qu F F, et al.Metabolomics analysis reveals major differential metabolites and metabolic alterations in tea plant leaves (Camellia sinensis L.) under different fluorine conditions[J]. Journal of Plant Growth Regulation, 2021, 40(2): 798-810.
[6] Yang X, Yu Z, Zhang B B, et al.Effect of fluoride on the biosynthesis of catechins in tea [Camellia sinensis (L.) O. Kuntze] leaves[J]. Scientia Horticulturae, 2015, 184: 78-84.
[7] 邢安琪, 武子辰, 徐晓寒, 等. 茶树富集氟的特点及其机制的研究进展[J]. 茶叶科学, 2022, 42(3): 301-315.
Xing A Q, Wu Z C, Xu X H, et al.Research advances of fluoride accumulation mechanisms in tea plants (Camellia sinensis)[J]. Journal of Tea Science, 2022, 42(3): 301-315.
[8] Yang J, Liu C S, Li J L, et al.Critical review of fluoride in tea plants (Camellia sinensis): absorption, transportation, tolerance mechanisms, and defluorination measures[J]. Beverage Plant Research, 2024, 4: e019. doi: 10.48130/bpr-0024-0010.
[9] Niu H L, Peng C Y, Zhu X D, et al.Positron-emitting tracer imaging of fluoride transport and distribution in tea plant[J]. Journal of the Science of Food and Agriculture, 2020, 100(8): 3554-3559.
[10] Luo J L, Ni D J, Li C L, et al.The relationship between fluoride accumulation in tea plant and changes in leaf cell wall structure and composition under different fluoride conditions[J]. Environmental Pollution, 2021, 270: 116283. doi: 10.1016/j.envpol.2020.116283.
[11] Lu Y, Guo W F, Yang X Q.Fluoride content in tea and its relationship with tea quality[J]. Journal of Agricultural and Food Chemistry, 2004, 52(14): 4472-4476.
[12] Peaucelle A, Braybrook S A, Le Guillou L, et al.Pectin-induced changes in cell wall mechanics underlie organ initiation in Arabidopsis[J]. Current Biology, 2011, 21(20): 1720-1726.
[13] Wolf S.Cell wall signaling in plant development and defense[J]. Annual Review of Plant Biology, 2022, 73: 323-353.
[14] Wang D D, Kanyuka K, Papp-Rupar M.Pectin: a critical component in cell-wall-mediated immunity[J]. Trends in Plant Science, 2023, 28(1): 10-13.
[15] Micheli F.Pectin methylesterases: cell wall enzymes with important roles in plant physiology[J]. Trends in Plant Science, 2001, 6(9): 414-419.
[16] Du J, Anderson C T, Xiao C W.Dynamics of pectic homogalacturonan in cellular morphogenesis and adhesion, wall integrity sensing and plant development[J]. Nature Plants, 2022, 8(4): 332-340.
[17] Hongo S, Sato K, Yokoyama R, et al.Demethylesterification of the primary wall by PECTIN METHYLESTERASE35 provides mechanical support to the Arabidopsis stem[J]. Plant Cell, 2012, 24(6): 2624-2634.
[18] Nguyen H P, Jeong H Y, Jeon S H, et al.Rice pectin methylesterase inhibitor28 (OsPMEI28) encodes a functional PMEI and its overexpression results in a dwarf phenotype through increased pectin methylesterification levels[J]. Journal of Plant Physiology, 2017, 208: 17-25.
[19] Xue C, Guan S C, Chen J Q, et al.Genome wide identification and functional characterization of strawberry pectin methylesterases related to fruit softening[J]. BMC Plant Biology, 2020, 20(1): 13. doi: 10.1186/s12870-019-2225-9.
[20] Li Z X, Wang C, Long D, et al.Genome-wide identification, bioinformatics characterization and functional analysis of pectin methylesterase inhibitors related to low temperature-induced juice sac granulation in navel orange (Citrus sinensis Osbeck)[J]. Scientia Horticulturae, 2022, 298: 110983. doi: 10.1016/j.scienta.2022.110983.
[21] Li Z X, Wu L M, Wang C, et al.Characterization of pectin methylesterase gene family and its possible role in juice sac granulation in navel orange (Citrus sinensis Osbeck)[J]. BMC Genomics, 2022, 23(1): 185. doi: 10.1186/s12864-022-08411-0.
[22] Del Corpo D, Fullone M R, Miele R, et al.AtPME17 is a functional Arabidopsis thaliana pectin methylesterase regulated by its PRO region that triggers PME activity in the resistance to Botrytis cinerea[J]. Molecular Plant Pathology, 2020, 21(12): 1620-1633.
[23] Liu N N, Sun Y, Pei Y K, et al.A pectin methylesterase inhibitor enhances resistance to Verticillium Wilt[J]. Plant Physiology, 2018, 176(3): 2202-2220.
[24] Li D Q, Shu Z F, Ye X L, et al.Cell wall pectin methyl-esterifcation and organic acids of root tips involve in aluminum tolerance in Camellia sinensis[J]. Plant Physiology and Biochemistry, 2017, 119: 265-274.
[25] Huang D J, Mao Y X, Guo G Y, et al.Genome-wide identification of PME gene family and expression of candidate genes associated with aluminum tolerance in tea plant (Camellia sinensis)[J]. BMC Plant Biology, 2022, 22(1): 306. doi: 10.1186/s12870-022-03686-7.
[26] Li B, Wang H, He S, et al.Genome-wide identification of the PMEI gene family in tea plant and functional analysis of CsPMEI2 and CsPMEI4 through ectopic overexpression[J]. Frontiers in Plant Science, 2022, 12: 807514. doi: 10.3389/fpls.2021.807514.
[27] Wan Q, Xu R K, Li X H.Proton release by tea plant (Camellia sinensis L.) roots as affected by nutrient solution concentration and pH[J]. Plant Soil and Environment, 2012, 58(9): 429-434.
[28] Gao H J, Zhao Q, Zhang X C, et al.Localization of fluoride and aluminum in subcellular fractions of tea leaves and roots[J]. Journal of Agricultural and Food Chemistry, 2014, 62(10): 2313-2319.
[29] Paysan-Lafosse T, Blum M, Chuguransky S, et al.InterPro in 2022[J]. Nucleic Acids Research, 2023, 51(D1): D418-D427.
[30] Gao Q J, Tong W, Li F D, et al.TPIA2: an updated tea plant information archive for Camellia genomics[J]. Nucleic Acids Research, 2024, 52(D1): D1661-D1667.
[31] Chen C J, Chen H, Zhang Y, et al.2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 13(8): 1194-1202.
[32] Kumar S, Stecher G, Li M, et al.MEGA X: molecular evolutionary genetics analysis across computing platforms[J]. Molecular Biology and Evolution, 2018, 35(6): 1547-1549.
[33] 李庆会, 李睿, 温晓菊, 等. 氟胁迫条件下茶树叶部实时荧光定量PCR分析中内参基因的筛选与验证[J]. 茶叶科学, 2024, 44(1): 27-36.
Li Q H, Li R, Wen X J, et al.Selection and validation of internal reference genes for qRT-PCR analysis under fluoride stress in Camellia sinensis leaves[J]. Journal of Tea Science, 2024, 44(1): 27-36.
[34] Livak K J, Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25(4): 402-408.
[35] Jach G, Binot E, Frings S, et al.Use of red fluorescent protein from Discosoma sp. (dsRED) as a reporter for plant gene expression[J]. The Plant Journal, 2001, 28(4): 483-491.
[36] 杨双, 阮燕晔, 樊金娟, 等. 一种简易的拟南芥幼苗微量DNA提取方法[J]. 沈阳农业大学学报, 2005, 36(1): 99-100.
Yang S, Ruan Y Y, Fan J J, et al.A rapid-simple method of trace DNA extraction from a single plant of Arabidopsis thaliana[J]. Journal of Shenyang Agricultural University, 2005, 36(1): 99-100.
[37] Pelloux J, Rustérucci C, Mellerowicz E J.New insights into pectin methylesterase structure and function[J]. Trends in Plant Science, 2007, 12(6): 267-277.
[38] Huang Y C, Wu H C, Wang Y D, et al.PECTIN METHYLESTERASE34 contributes to heat tolerance through its role in promoting stomatal movement[J]. Plant Physiology, 2017, 174(2): 748-763.
[39] Xu Z J, Yang M, Li Z Y, et al.Tissue-specific pectin methylesterification and pectin methylesterase activities play a role in lettuce seed germination[J]. Scientia Horticulturae, 2022, 301: 111134. doi: 10.1016/j.scienta.2022.111134.
[40] Pei Y Y, Wang Y K, Wei Z Z, et al.Pectin methylesterase inhibitors GhPMEI53 and AtPMEI19 improve seed germination by modulating cell wall plasticity in cotton and Arabidopsis[J]. Journal of Integrative Agriculture, 2024, 23(10): 3487-3505.
[41] Ren C, Kermode A R.An increase in pectin methylesterase activity accompanies dormancy breakage and germination of yellow cedar seeds[J]. Plant Physiology, 2000, 124(1): 231-242.
[42] Geng X Y, Horst W J, Golz J F, et al.LEUNIG_HOMOLOG transcriptional co-repressor mediates aluminium sensitivity through PECTIN METHYLESTERASE46-modulated root cell wall pectin methylesterification in Arabidopsis[J]. The Plant Journal, 2017, 90(3): 491-504.
[43] Yang X Y, Zeng Z H, Yan J Y, et al.Association of specific pectin methylesterases with Al-induced root elongation inhibition in rice[J]. Physiologia Plantarum, 2013, 148(4): 502-511.
[44] Zhou Y J, Li R M, Wang S J, et al.Overexpression of MePMEI1 in Arabidopsis enhances Pb tolerance[J]. Frontiers in Plant Science, 2022, 13: 996981. doi: 10.3389/fpls.2022.996981.
文章导航

/