欢迎访问《茶叶科学》,今天是
研究报告

毛竹立竹密度对林下茶树生理生长和茶叶品质的影响

  • 赵建诚 ,
  • 倪惠菁 ,
  • 王波 ,
  • 蔡春菊 ,
  • 杨振亚
展开
  • 1.浙江省林业科学研究院,浙江浙西北竹林生态系统定位观测研究站,浙江 杭州 310023;
    2.国际竹藤中心,北京 100102
赵建诚,男,助理研究员,主要从事竹林下经济和竹林培育研究。

收稿日期: 2024-07-05

  修回日期: 2024-11-10

  网络出版日期: 2025-01-08

基金资助

浙江省省院合作林业科技项目(2022SY16)、国家重点研发计划(2023YFD2201203)

Effect of Bamboo Density on the Physiological Growth and Tea Quality of Tea Plants under the Moso Bamboo Forest

  • ZHAO Jiancheng ,
  • NI Huijing ,
  • WANG Bo ,
  • CAI Chunju ,
  • YANG Zhenya
Expand
  • 1. Zhejiang Academy of Forestry, Northwest Zhejiang Bamboo Forest Ecosystem Positioning Observation and Research Station, Hangzhou 310023 China;
    2. International Centra of Bamboo and Rattan, Beijing 100102, China

Received date: 2024-07-05

  Revised date: 2024-11-10

  Online published: 2025-01-08

摘要

为探究茶树在不同立竹密度条件下生理生长的适应性机制,以浙江省莫干山地区的毛竹-茶树混交林为研究对象,设置T1、T2、T3等3个处理,立竹密度分别为1 200、1 800、2 400株·hm-2,并以3 000~3 300株·hm-2为对照(CK),培育2年后统计茶叶产量,测定茶树根、茎、叶生物量以及氮、磷、非结构性碳水化合物(NSC)的含量,分析根系形态、分布和构型,检测茶叶中氨基酸、咖啡碱、茶多酚等品质指标。结果表明,与CK相比,T2和T3处理茶叶产量显著分别提高15.96%和18.80%,茶树叶片、侧根的生物量增加,茶树叶片中氮、磷和NSC含量显著上升。T1、T2和T3处理显著增加了茶树0~20 cm土层侧根的根长、根表面积、比根长、>0~1 mm径阶的根长比例,降低了0~20 cm土层侧根的平均直径和粗根(直径>2 mm)的根长比例,增加了侧根中的可溶性糖和淀粉含量,降低了整株根系的拓扑指数,提高了根系根尖数和分形维数。T1和T2处理显著提高了茶叶中氨基酸、咖啡碱、茶多酚以及水浸出物含量,降低了酚氨比。结果说明,通过合理的立竹密度调控可有效促进茶树的生长,提高茶叶的产量和品质。茶树通过提升氮、磷和NSC在叶片和侧根的含量,定向促进叶片和侧根的生长;通过增加细根比例,降低根系建设成本,增强根系分支强度,促进根系对表层土壤空间的侵占,以适应林下适度的郁闭条件和种间竞争强度。研究结果可为竹-茶管理提供科学依据。

本文引用格式

赵建诚 , 倪惠菁 , 王波 , 蔡春菊 , 杨振亚 . 毛竹立竹密度对林下茶树生理生长和茶叶品质的影响[J]. 茶叶科学, 2024 , 44(6) : 928 -940 . DOI: 10.13305/j.cnki.jts.2024.06.003

Abstract

To explore the adaptive mechanism of physiological growth of tea plants under different bamboo density conditions, three treatments, namely T1, T2 and T3, were set in the natural mixed forest of moso bamboo (Phyllostachys edulis) and tea plants [Camellia sinensis (L.) O. Kuntze] in the Mogan mountain area of Zhejiang Province, with bamboo densities of 1 200 plants·hm-2, 1 800 plants·hm-2 and 2 400 plants·hm-2, respectively, and 3 000~3 300 plants·hm-2 as the control (CK). Tea yield was evaluated, nitrogen, phosphorus, nonstructural carbohydrates (NSC) and biomass distribution of tea tree were determined, root morphology, distribution and architecture were analyzed, and quality indicators of tea such as amino acids, theanine and tea polyphenols were tested after 2 years of cultivation. The results show that (1) compared to CK, T2 and T3 treatments significantly increased tea yield by 15.96% and 18.8%, respectively, increased biomass of leaves and lateral roots, and increased the nitrogen, phosphorus and NSC contents in leaves, (2) T1, T2 and T3 treatments significantly increased the root length, root surface area and root length ratio of the >0-1 mm diameter grade in 0-20 cm soil layer, reduced root diameter and root length ratio of thick roots (diameter>2 mm) in 0-20 cm soil layer, increased the contents of starch and soluble sugars in lateral roots, reduced the topological index of the whole root system and increased the root tips and root fractal dimension, (3) T1 and T2 treatments significantly increased the contents of amino acids, caffeine and tea polyphenols and water extract, and reduced the polyphenols-amino acid ratio. In conclusion, reasonable control of bamboo density can promote the growth of tea plants and improve the tea yield effectively. Tea plants promote the growth of leaves and lateral roots by increasing nitrogen, phosphorus and non-structural carbohydrate accumulation in leaves and lateral roots and promote root encroachment of surface soil space by increasing the proportion of fine roots, enhancing the root branch strength, reducing the cost of root construction to accommodate moderate closure conditions and interspecific competition strength. The conclusion can provide scientific basis for the management of innovation mode of tea plants under the moso bamboo forest.

参考文献

[1] 曹意, 丁苏雅, 覃云斌, 等. 竹茶混交模式对表层土壤有机碳储量及组分的影响[J]. 广西植物, 2023, 43(9): 1668-1677.
Cao Y, Ding S Y, Qin Y B, et al.Effects of bamboo-tea mixed model on surface soil organic carbon storage and components[J]. Guihaia, 2023, 43(9): 1668-1677.
[2] 方兴华. 老茶山退茶还竹的效益[J]. 亚热带水土保持, 1989(2): 53-54.
Fang X H.The benefit of returning tea to bamboo from the old tea mountain[J]. Subtropical Soil and Water Conservation, 1989(2): 53-54.
[3] 王叶, 张国林, 阳树英, 等. 生境对茶叶品质和产量影响的光合生理机制[J]. 应用生态学报, 2018, 29(11): 3596-3606.
Wang Y, Zhang G L, Yang S Y, et al.Photosynthetic mechanism of tea yield and quality affected by different habitats[J]. Chinese Journal of Applied Ecology, 2018, 29(11): 3596-3606.
[4] 杨海滨, 盛忠雷, 谢堃, 等. 不同栽培模式对山地茶园生态环境和茶叶品质的季节调控[J]. 西南农业学报, 2015, 28(4): 1559-1563.
Yang H B, Sheng Z L, Xie K, et al.Seasonal regulation of different cultivation mode on ecological environment and tea quality in hilly tea plantation[J]. Southwest China Journal of Agricultural Sciences, 2015, 28(4): 1559-1563.
[5] Pretzsch H.Mixing degree, stand density, and water supply can increase the overyielding of mixed versus monospecific stands in Central Europe[J]. Forest Ecology and Management, 2022, 503: 119741. doi: 10.1016/j.foreco.2021.119741.
[6] 张勇强, 李智超, 厚凌宇, 等. 林分密度对杉木人工林下物种多样性和土壤养分的影响[J]. 土壤学报, 2020, 57(1): 239-250.
Zhang Y Q, Li Z C, Hou L Y, et al.Effects of stand density on understory species diversity and soil nutrients in Chinese fir plantation[J]. Acta Pedologica Sinica, 2020, 57(1): 239-250.
[7] Baldissera C T, Frak E, de Faccio Carvalho P C, et al. Plant development controls leaf area expansion in alfalfa plants competing for light[J]. Annals of Botany, 2014, 113(1): 145-157.
[8] Coble A P, Cavaleri M A.Vertical leaf mass per area gradient of mature sugar maple reflects both height-driven increases in vascular tissue and light-driven increases in palisade layer thickness[J]. Tree Physiology, 2017, 37(10): 1337-1351.
[9] Gu Y, Zheng H Y, Li S, et al.Effects of narrow-wide row planting patterns on canopy photosynthetic characteristics, bending resistance and yield of soybean in maize-soybean intercropping systems[J]. Scientific Reports, 2024, 14(1): 9361. doi: 10.1038/s41598-024-59916-5.
[10] Defrenet E, Roupsard O, Meersche K V D, et al. Root biomass, turnover and net primary productivity of a coffee agroforestry system in Costa Rica: effects of soil depth, shade trees, distance to row and coffee age[J]. Annals of Botany, 2016, 118: 833-851.
[11] Resendea R T, Soaresb A A V, Forrester D I. Environmental uniformity, site quality and tree competition interact to determine stand productivity of clonal Eucalyptus[J]. Forest Ecology and Management, 2018, 410: 76-83.
[12] Oliveira I R, Bouillet J P, Guillemot J, et al.Changes in light use efficiency explains why diversity effect on biomass production is lower at high planting density in mixed-species plantations of Eucalyptus grandis and Acacia mangium[J]. Forest Ecology and Management, 2024, 554: 121663. doi: 10.1016/j.foreco.2023.121663.
[13] Curt T, Prévosto B.Rooting strategy of naturally regenerated beech in Silver birch and Scots pine woodlands[J]. Plant and Soil, 2003, 255(1): 265-279.
[14] Yang Z Y, Zhou B Z, Ge X G, et al.Species-specific responses of root morphology of three co-existing tree species to nutrient patches reflect their root foraging strategies[J]. Frontiers in Plant Science, 2020, 11: 618222. doi: 10.3389/fpls.2020.618222.
[15] 樊艳荣, 陈双林, 杨清平, 等. 毛竹材用林林下植被群落结构对多花黄精生长的影响[J]. 生态学报, 2014, 34(6): 1471-1480.
Fan Y R, Chen S L, Yang Q P, et al.The impact of understory vegetation structure on growth of Polygonatum cyrtonema in extensively managed Phyllostachys edulis plantation[J]. Acta Ecologica Sinica, 2014, 34(6):1471-1480.
[16] 高平珍, 陈双林, 郭子武, 等. 毛竹林下苦参和决明幼苗生长和生物量分配的立竹密度效应[J]. 生态学杂志, 2018, 37(3): 8819-8822.
Gao P Z, Chen S L, Guo Z W, et al.Growth and biomass allocation of Sophotora flavescens and Catsia tora seedlings beneath moso bamboo forest in response to moso bamboo density[J]. Chinese Journal of Ecology, 2018, 37(3): 8819-8822.
[17] 陈义勇, 黎健龙, 周波, 等. 鼠茅草间作对茶园土壤及茶叶品质成分的影响[J]. 中国农业科学, 2023, 56(24): 4916-4929.
Chen Y Y, Li J L, Zhou B, et al.Effects of intercropping with Vulpia myuros in tea plantation on soil and tea quality components[J]. Scientia Agricultura Sinica, 2023, 56(24): 4916-4929.
[18] Brunner I, Pannatier E G, Frey B, et al.Morphological and physiological responses of Scots pine fine roots to water supply in a climatic dry region in Switzerland[J]. Tree Physiology, 2009, 29: 541-550.
[19] Callahan D M, Munday J N, Atwater H A.Solar cell light trapping beyond the ray optic limit[J]. Nano Letters, 2012, 12(1): 214-218.
[20] 杨先裕, 袁紫倩, 颜福花, 等. 不同郁闭度板栗林下套种香榧的光合生理特性研究[J]. 安徽农业大学学报, 2016, 43(3): 400-404.
Yang X Y, Yuan Z Q, Yan F H, et al.The photosynthetic and physiological characteristics of Torreya grandis interplanted with chestnut forests under different canopy densities[J]. JJournal of Anhui Agricultural University, 2016, 43(3): 400-404.
[21] 陈斌, 李洪瑶, 刘筱玮, 等. 不同光照强度对新娘草叶片形态建成及超微结构的影响[J]. 草业学报, 2019, 28(7): 175-185.
Chen B, Li H Y, Liu X W, et al.Effects of different light intensities on morphogenesis and ultrastructure of Gibasis pellucida leaf[J]. Acta Prataculturae Sinica, 2019, 28(7): 175-185.
[22] 董伊晨, 刘艳红. 红松不同苗龄幼苗叶性状对温度和光照变化的响应[J]. 生态学报, 2017, 37(17): 5662-5672.
Dong Y C, Liu Y H.Changes in the response of leaf traits in Pinus koraiensis (Korean pine) seedlings of different ages to controlled temperatures and light conditions[J]. Acta Ecologica Sinica, 2017, 37(17): 5662-5672.
[23] 成向荣, 邢文黎, 苑海静, 等. 披针叶茴香对变化光环境的表型可塑性[J]. 生态学报, 2019, 39(6): 1935-1944.
Cheng X R, Xing W L, Yuan H J, et al.Phenotypic plasticity of Illicium lanceolatum in response to varied light environments[J]. Acta Ecologica Sinica, 2019, 39(6): 1935-1944.
[24] 陆姣云, 段兵红, 杨梅, 等. 植物叶片氮磷养分重吸收规律及其调控机制研究进展[J]. 草业学报, 2018, 27(4): 178-188.
Lu J Y, Duan B H, Yang M, et al.Research progress in nitrogen and phosphorus resorption from senesced leaves and the influence of ontogenetic and environmental factors[J]. Acta Prataculturae Sinica, 2018, 27(4): 178-188.
[25] 胡国策, 蒋家月, 田坤红, 等. 氮素形态和水平对茶树生理特性的影响[J]. 安徽农业大学学报, 2018, 45(4): 658-593.
Hu G C, Jiang J Y, Tian K H, et al.Effects of nitrogen forms and nitrogen levels on the physiological characteristics of tea plants[J]. Journal of Anhui Agricultural University, 2018, 45(4): 588-593.
[26] 李真, 袁婷婷, 朱成磊, 等. 毛竹铵态氮转运蛋白的分子特征及基因表达模式[J]. 林业科学, 2021, 57(7): 70-79.
Li Z, Yuan T T, Zhu C L, et al.Molecular characteristics and patterns of gene expression of ammonium transporter in moso bamboo[J]. Scientia Silvae Sinicae, 2021, 57(7): 70-79.
[27] Yang Z Y, Cao Y H, Zhao J C, et al. Root response of moso Bamboo (Phyllostachys edulis (Carrière) J. Houz.) seedlings to drought with different intensities and durations[J]. Forests, 2021, 12(50): fl2010050. doi: 10.3390/fl2010050.
[28] 蔡宗明, 邓智文, 李秉钧, 等. 带状采伐宽度对毛竹林地下竹鞭结构特征的影响[J]. 林业科学, 2023, 59(4): 79-87.
Cai Z M, Deng Z W, Li B J, et al.Effects of strip-cutting width on the structural characteristics of underground bamboo rhizome in moso bamboo forests[J]. Scientia Silvae Sinicae, 2023, 59(4): 79-87.
[29] 贾林巧, 陈光水, 张礼宏, 等. 常绿阔叶林外生和丛枝菌根树种细根形态和构型性状对氮添加的可塑性响应[J]. 应用生态学报, 2021, 32(2): 529-537.
Jia L Q, Chen G S, Zhang L H, et al.Plastic responses of fine root morphology and architecture traits to nitrogen addition in ectomycorrhizal and arbuscular mycorrhizal tree species in an evergreen broadleaved forest[J]. Chinese Journal of Applied Ecology, 2021, 32(2): 529-537.
[30] Yang Z Y, Zhao J C, Ni H J, et al.Three subtropical species adapt to drought by reallocating biomass and adjusting root architecture[J]. Forests, 2023, 14: 806. doi: 10.3390/f14040806.
[31] 许静静, 李琦, 吴文景, 等. 垂直方向磷素竞争对杉木根系生长及生物量分配的影响[J]. 生态学报, 2019(6): 2071-2081.
Xu J J, Li Q, Wu W J, et al.Effects of vertical phosphorus competition on root growth and biomass distribution of Chinese fir seedlings[J]. Acta Ecologica Sinica, 2019(6): 2071-2081.
[32] Fitter A H, Stickland T R, Harvey M L, et al.Architectural analysis of plant root systems 1. Architectural correlates of exploitation efficiency[J], New Phytologist, 1991, 118(1): 375-382.
[33] Alvarez-Flores R, Nguyen-Thi-Truc A, Peredo-Parada S, et al. Rooting plasticity in wild and cultivated Andean Chenopodium species under soil water deficit[J]. Plant and Soil, 2018, 425: 479-492.
[34] Fry E L, Evans A L, Sturrock C J, et al.Root architecture governs plasticity in response to drought[J]. Plant and Soil, 2018, 433: 189-200.
[35] 周华, 熊嘉乾, 吴金群, 等. 海南中部典型槟榔-象草复合系统中根系空间分布及地下竞争[J]. 热带作物学报, 2023, 44(5): 1030-1038.
Zhou H, Xiong J Q, Wu J Q, et al.Spatial distribution and underground competition of roots in typical areca nut-elephant grass complex system in central Hainan, China[J]. Chinese Journal of Tropical Crops, 2023, 44(5): 1030-1038.
[36] 王月敏, 柯玉琴, 李文卿, 等. 不同光温条件对翠碧一号烤烟碳氮代谢的影响[J]. 江西农业学报, 2021, 33(12): 63-70.
Wang Y M, Ke Y Q, Li W Q, et al.Effects of Different light and temperature conditions on carbon and nitrogen metabolism of CB-1 flue-cured tobacco[J]. Acta Agriculturea Universitatis Jiangxisis, 2021, 33(12): 63-70.
[37] 陈强. 光照对‘金牡丹’生长及其茶叶品质的影响[J]. 茶叶, 2022, 48(4): 218-223.
Chen Q.Effects of light on the growth and tea quality of tea cultivar ‘Jinmudan’[J]. Journal of Tea, 2022, 48(4): 218-223.
[38] 申瑞寒, 马立锋, 杨向德, 等. 氮素形态和弱光胁迫对茶树生长代谢的影响[J]. 茶叶科学, 2023, 43(3): 349-355.
Shen R H, Ma L F, Yang X D.Effects of nitrogen form and weak light stress on tea plants growth and metabolism[J]. Journal of Tea Science, 2023, 43(3): 349-355.
[39] Ye J H, Lü Y Q, Liu S R, et al.Effects of light intensity and spectral composition on the transcriptome profiles of leaves in shade grown tea plants (Camellia sinensis L.) and regulatory network of flavonoid biosynthesis[J]. Molecules, 2021, 26(19): 5836. doi: 10.3390/molecules26195836.
文章导航

/