欢迎访问《茶叶科学》,今天是

茶树GAGP基因克隆及表达分析

  • 李远华 ,
  • 陆建良 ,
  • 范方媛 ,
  • 石玉涛
展开
  • 1. 武夷学院茶与食品学院/福建省武夷茶资源创新利用重点实验室/福建省高校茶叶工程研究中心/中国乌龙茶产业协同创新中心(培育),福建 武夷山 354300;
    2. 浙江大学茶叶研究所,浙江 杭州 310058
李远华,男,教授,博士,主要从事茶学及生物技术研究,E-mail: yhli@wuyiu.edu.cn

收稿日期: 2014-09-09

  修回日期: 2014-10-13

  网络出版日期: 2019-08-23

基金资助

国家自然科学基金面上项目(31070613)、福建省科技厅重点项目(2012N0025)、国家级大学生创新创业训练计划项目(201310397001); 国家自然科学基金面上项目(31070613)、福建省科技厅重点项目(2012N0025)、国家级大学生创新创业训练计划项目(201310397001)

Gene Cloning and Expression Analysis of GAGP in Tea Plant

  • LI Yuanhua ,
  • LU Jianliang ,
  • FAN Fangyuan ,
  • SHI Yutao
Expand
  • 1. College of Tea and Food Science, Wuyi University, Wuyishan 354300, China;
    2. Tea Research Institute of Zhejiang University, Hangzhou 310058, China

Received date: 2014-09-09

  Revised date: 2014-10-13

  Online published: 2019-08-23

摘要

采用SSH技术分析了VA菌根处理后福鼎大白茶根系基因差异表达情况,获得了差异序列,序列比对显示,在下调表达序列中可能包含了10种未知功能的基因;在上调表达序列中可能包含了5种可能的基因。采用RACE技术获得GAGP基因长3β146βbp(GenBank,登录号KJ946251),具有2β769βbp开放阅读框(1st~2β769th),编码923个氨基酸。分子生物信息学分析表明,GAGP蛋白分子量约106.9βkD,等电点为8.42,定位于线粒体内。定量PCR分析表明,GAGP在茶树叶片中表达强度存在明显的品种差异,GAGP对生物性和非生物性胁迫均有明显响应。

关键词: 茶树; GAGP; 基因克隆; 表达

本文引用格式

李远华 , 陆建良 , 范方媛 , 石玉涛 . 茶树GAGP基因克隆及表达分析[J]. 茶叶科学, 2015 , 35(1) : 64 -72 . DOI: 10.13305/j.cnki.jts.2015.01.012

Abstract

By using SSH, the differences in gene expression of root from Fudingdabai tea plant infected by VA mycorrhiza were analyzed and the diversity sequences was obtained. The sequence alighment showed that the down-regulated expression sequence possibly contained 10 unknown genes and the up-regulated expression sequence possibly contained 5 known genes. The GAGP (gap-pol) genic full-length sequence was obtained by using RACE. The length of GAGP gene was 3146bp (GenBank, Accession no., KJ946251), with 2β769βbp ORF (1st-2β769th), the sequence encoded 923 amino acid. Bioinformatics indicated that the GAGP protein’s molecular weight was about 106.9βkD, IEP was 8.42, located in mitochondria. The study also showed expression degree of GAGP was distinct in different cultivars, while it responded obviously to biological and non-biological stress.

参考文献

[1] Tunstall A C.Mycorrhiza in the plants[J]. Indian Tea Asso Sci Dep Quart, 1925: 159.
[2] Tunstall A C.Some observations on tea roots[J]. Indian Tea Asso Sci Dep Quart, 1930: 75-78.
[3] Webster B N.Mycorrhiza[J]. Tea Quart, 1953, 24: 26-30.
[4] Satyanarayana G S, Venkatoramanan M N.Mycorrhiza associate with tea and weeds from soils of N. E. India[C]// PLACROSYM standing committee. Plant protection-proceedings of the second annual symposiam on plantation crops. 1979: 84-88.
[5] 李名君, 束际林. 树菌根的研究[J]. 中国茶叶, 1984, 6(4): 18-19.
[6] 郭秀珍, 毕国昌. 林木菌根及应用技术[M]. 北京: 中国林业出版社, 1989: 80-131.
[7] Taylor, Francis.Ann Sci Rep[M]. London: Tea Research Assciation, 1981: 55-58.
[8] 束际林, 李名君. 茶树VA菌根的生理学效应研究[J]. 茶叶科学, 1987, 7(1): 7-14.
[9] 林智. VA菌根对茶树生长和矿质元素吸收的影响[J]. 茶叶科学, 1993, 13(1): 15-20.
[10] 周隆义, 季瑞琰. 茶树VA菌根的生物效应与土壤施磷量的关系[J]. 茶业通报, 1993(2): 1-4.
[11] 刘柏玉, 雷泽周. VA菌根对茶苗生长及养分吸收的影响[J]. 中国茶叶, 1995, 17(5): 6-7.
[12] 王守生, 何首林, 王德军, 等. YAM真菌对茶树营养生长和茶叶品质的影响[J]. 土壤学报, 1997, 34(1): 97-102.
[13] 王曙光, 林先贵, 董元华, 等. 丛枝菌根(AM)对无性繁殖茶苗生长及茶叶品质的影响[J]. 植物学通报, 2002, 19(4): 462-468.
[14] 韩文炎, 译. VA菌根与不同品种茶树生长的关系[J]. 中国茶叶, 2003, 25(4): 35.
[15] Ouziad F, Wilde P, Schmelzer E, Hildebrandt U, et al. Analysis of expression of aquaporins and Na+/H+ transporters in tomato colonized by arbuscular mycorrhizal fungi and affected by salt stress[J]. Environ Exp Bot, 2006, 57: 177-186.
[16] Porcel R, Azcon R, Ruiz-Lozano JM.Evaluation of the role of genes encoding for dehydrin proteins (LEA D-11) during drought stress in arbuscular mycorrhizal Glycine max and Lactuca sativa plants[J]. J Exp Bot, 2005, 56(417): 1933-1942.
[17] Schaarschmidt S, Roitsch T, Hause B.Arbuscular mycorrhiza induces gene expression of the apoplastic invertase LIN6 in tomato (Lycopersicon esculentum) roots[J]. J Exp Bot, 2006, 57: 4015-4023.
[18] Niemi K, Sutela S, Haggman H, et al. Changes in polyamine content and localization of Pinus sylvestris ADC and Suillus variegatus ODC mRNA transcripts during the formation of mycorrhizal interaction in an in vitro cultivation system[J]. J Exp Bot, 2006, 57: 2795-2804
[19] Porcel R, Azcón R, Ruiz-Lozano JM.Evaluation of the role of genes encoding for pyrroline-5-carboxylate synthetase (P5CS) during drought stress in arbuscular mycorrhizal Glycine max and Lactuca sativa plants[J]. Physiol Mol Plant P athol, 2004, 65: 211-221.
[20] Javot H, Pumplin N, Harisson M J.Phosphate in the arbuscular mycorrhizal transport properties and regulatory roles[J]. Plant Cell Environment, 2007, 30(3): 310-322.
[21] Nagy R, Karandashov1 V, Chague V, et al. The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species[J]. Plant Journal, 2005, 42(2): 236-250.
[22] Karandashov V, Nagy R, Wegmuller S, et al. Evolutionary conservation of a phosphate transporter in the arbuscular mycorrhizal symbiosis[J]. Proc Natl Acad Sci USA, 2004, 101: 6285-6290.
[23] Güimil S, Chang H S, Zhu T, et al. Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization[J]. Proc Natl Acad Sci USA, 2005, 102(22): 8066-8070.
[24] Glassop D, Smith S E, Smith F W.Cereal phosphate transporters associated with the mycorrhizal pathway of phosphate uptake into roots[J]. Planta, 2005, 222(4): 688-698.
[25] Maeda D, Ashida K, Iguchi K, et al. Knockdown of an arbuscular mycorrhiza-inducible phosphate transporters gene of Lotus japonicus sppresses mutualistic symbiosis[J]. Plant Cell Physiol, 2006, 47(7): 807-817.
[26] 张玉静. 分子遗传学[M]. 北京: 科学出版社, 2000: 345-361.
[27] Velasco R, Zhaukikh A, Troggio M, et al. A high quality draft consensus sequence of the genome of aheterozygous grapevine variety[J]. Plops ONE, 2007, 2(12): e1326.
[28] Thomson K G, Thomas J E, Dietzgen R G.Retrotransposon-like sequences integrated into the genome of pineapple, Ananas comosus[J]. Plant Mol Biol, 1998, 38(3): 461-465.
[29] Motamayor J C, Mockaitis K, Schmutz J, et al. The genome sequence of the most widely cultivated cacao type and its use to identify candidate genes regulating pod color[J]. Genome Biol. 2013, 14(6): R53.
[30] 李远华, 郑芳, 倪德江, 等. 茶树接种VA菌根的生理特性研究[J]. 茶叶科学, 2011, 31(6): 504-512.
文章导航

/