本文研究了茶树虫害诱导挥发物(Herbivore-induced plant volatiles, HIPVs)对邻近茶苗防御能力的影响。将健康茶苗放在茶尺蠖取食的茶苗附近,作为HIPVs的处理,测定了茶树防御相关基因在不同处理下的表达水平、抗性防御物质的水平,并检测了茶尺蠖危害茶苗邻近植株对茶尺蠖幼虫生长的影响。研究结果表明,与对照相比,茶尺蠖幼虫为害茶苗释放的HIPVs在处理后24 h和12 h内分别显著诱导邻近茶苗CsiLOX1和CsiACS1基因的表达水平,这些挥发物还能增强茶尺蠖取食诱导的防御基因的表达。HIPVs处理3 d后,茶树的重要防御物质多酚氧化酶(Polyphenol oxidases, PPOs)活性显著高于对照,是对照的1.36倍,同时,取食这些茶苗的茶尺蠖幼虫体重也显著低于对照。上述结论表明茶尺蠖取食诱导的挥发物能够作为信号物质在茶树中传递,并能够通过增强茉莉酸和乙烯抗虫途径提高对茶尺蠖的抗性。
[1] Kachroo A, Robin GP.Systemic signaling during plant defense[J]. Curr Opin Plant Biol, 2013, 16(4): 527-533.
[2] Schweiger R, Heise AM, Persicke M, et al.Interactions between the jasmonic and salicylic acid pathway modulate the plant metabolome and affect herbivores of different feeding types[J]. Plant Cell Environ, 2014, 37(7): 1574-1585.
[3] Dicke M, Baldwin IT.The evolutionary context for herbivore induced plant volatiles: beyond the cry for help[J]. Trends Plant Sci, 2010, 15(3): 167-175.
[4] Wu JQ, Baldwin IT.New insights into plant responses to the attack frominsect herbivores[J]. Annu Rev Genet, 2010, 44: 1-24.
[5] Engelberth J, Contreras CF, Dalvi C, et al.Early transcriptome analyses of Z-3-Hexenol-treated Zea mays revealed distinct transcriptional networks and anti-herbivore defense potential of green leaf volatiles[J]. PLoS ONE, 2013, 8(10): e77465.
[6] Scala A, Allmann S, Mirabella R, et al.Green leaf volatiles: a plant’s multifunctional weapon against herbivores and pathogens[J]. Int J Mol Sci, 2013, 14(9): 17781-17811.
[7] Baldwin IT, Schultz JC.Rapid changes in tree leaf chemistry induced by damage: Evidence for communication between plants[J]. Science, 1983, 221(4607): 277-279.
[8] Kessler A, Baldwin IT.Plant responses to insect herbivory: the emerging molecular analysis[J]. Annual Rev Plant Biol, 2002, 53: 299-328.
[9] Arimura GI, Ozawa R, Nishioka T, et al.Herbivore-induced volatiles induced the emission of ethylene in neighboring lima bean plants[J]. Plant J, 2002, 29(1): 87-98.
[10] Tscharntke T, Thiessen S, Dolch R, et al.Herbivory, induced resistance, and interplant signal transfer in Alnus glutinosa[J]. Biochem Syst Ecol, 2001, 29(10): 1025-1047.
[11] Farmer EE.Surface-to-air signal[J]. Nature, 2001, 411(6839): 854-856.
[12] 穆丹, 付建玉, 刘守安, 等. 虫害诱导的植物挥发物代谢调控机制研究进展[J]. 生态学报, 2010, 30(15): 4221-4233.
[13] Xin Z, Zhang Z, Chen Z, et al.Salicylhydroxamic acid (SHAM) negatively mediates tea herbivore-induced direct and indirect defense against the tea geometrid Ectropis obliqua[J]. J Plant Res, 2014, 127(4): 565-572.
[14] Xin Z, Li X, Li J, et al.Application of chemical elicitor (Z)-3-hexenol enhances direct and indirect plant defenses against tea geometrid Ectropis obliqua[J]. BioControl, 2016, 61(1): 1-12.
[15] Wang GC, Liang HY, Sun XL, et al. Antennal olfactory responses of Apanteles sp. (Hymenoptera: Braconidae) to herbivore-induced plant volatiles [J]. Adv Mater Res, 2012, 393/394/395: 604-607.
[16] Sun XL, Wang GC, Gao Y, et al.Volatiles emitted from tea plants infested by Ectropis obliqua larvae are attractive to conspecific moths[J]. J Chem Ecol, 2014, 40(10): 1080-1089.
[17] Sun XL, Li XW, Xin ZJ, et al.Development of synthetic volatile attractant for male Ectropis obliqua moths[J]. J Integr Agr, 2016, 15(7): 1532-1539.
[18] Yang ZW, Duan XN, Jin S, et al.Regurgitant derived from the tea geometrid Ectropis obliqua suppresses wound-induced polyphenol oxidases activity in tea plants[J]. J Chem Ecol, 2013, 39(6): 744-751.
[19] 孙晓玲, 蔡晓明, 马春雷, 等. 茉莉酸甲酯和机械损伤对茶树叶片多酚氧化酶时序表达的影响[J]. 西北植物学报, 2011, 31(9): 1805-1810.
[20] Liu S, Han B.Differential expression pattern of an acidic 9/13 lipoxygenase in flower opening and senescence and in leaf response to phloem feeders in the tea plant[J]. BMC Plant Biol, 2010, 10(1): 228-243.
[21] 张亚丽, 乔小燕, 陈亮. 茶树ACC氧化酶基因全长cDNA的克隆与表达分析[J] 茶叶科学, 2008, 28(6): 459-467.
[22] Mithofer A, Wanner G, Boland W.Effects of feeding Spodoptera littoralis on Lima bean leaves. II. Continuous mechanical wounding resembling insect feeding is sufficient to elicit herbivory-related volatile emission[J]. Plant Physiol, 2005, 137(3): 1160-1168.
[23] Hilker M, Meiners T.Early herbivore alert: insect eggs induce plant defense[J]. J Chem Ecol, 2006, 32(7): 1379-1397.
[24] Tamiru A, Bruce TJA, Woodcock CM, et al.Maize landraces recruit egg and larval parasitoids in response to egg deposition by a herbivore[J]. Ecol Lett, 2011, 14: 1075-1083.
[25] Turlings TCJ, Wäckers FL.Recruitment of predators and parasitoids by herbivore-damaged plants [M]//Cardé RT, Millar J. Advances in insect chemical ecology. Cambridge: Cambridge University Press, 2004: 21-75.
[26] Kim J, Felton GW.Priming of antiherbivore defensive responses in plants[J]. Insect Sci, 2013, 20(3): 273-285.
[27] Delory BM, Delaplace P, Fauconnier ML, et al.Root-emitted volatile organic compounds: can they mediate belowground plant-plant interactions?[J]. Plant Soil, 2016, 402(1): 1-26.
[28] Arimura G, Ozawa R, Shimoda T, et al.Herbivory-induced volatiles elicit defence genes in lima bean leaves[J]. Nature, 2000, 406(6795): 512-514.
[29] Arimura G, Kost C, Boland W.Herbivore-induced, indirect plant defences[J]. BBA-Mol Cell Biol L, 2005, 1734(2): 91-111.
[30] Cai XM, Sun XL, Dong WX, et al.Herbivore species, infestation time, and herbivore density affect induced volatiles in tea plants[J]. Chemoecology, 2014, 24(1): 1-14.
[31] Engelberth J, Alborn HT, Schmelz EA, et al.Airborne signals prime plants against insect herbivore attack[J]. Proc Natl Acad Sci USA, 2004, 101(6): 1781-1785.
[32] Kessler A, Halitschke R, Diezel C, et al.Priming of plant defense responses in nature by airborne signaling between Artemisia tridentata and Nicotiana attenuata[J]. Oecologia, 2006, 148(2): 280-292.
[33] Matthes MC, Bruce TJA, Ton J, V, et al. The transcriptome of cis-jasmone-induced resistance in Arabidopsis thaliana and its role in indirect defence[J]. Planta, 2010, 232(5): 1163-1180.