By using SSH, the differences in gene expression of root system from Fuding Dabai tea infected by VA mycorrhiza were analyzed and diversity sequences were obtained. The sequence alignment showed that the mentioned sequence contain 3-hydroxy-3-methylglutaryl coenzyme A reductase named HMGR. HGMR full-length sequence was obtained by using RACE. The length of HGMR gene is 2 420 bp, with 1 773 bp ORF (163rd-1935th), and the sequence encoded 590 amino acids. Bioinformatics indicated that the HGMR protein’s molecular weight is about 63.5 kD, IEP is 6.8, which located in mitochondria or endoplasmic reticulum membrane. The study also showed expression degree of HGMR is distinct in different cultivars, while it responded obviously to biological and non-biological stress.
LI Yuanhua
,
LU Jianliang
,
FAN Fangyuan
,
SHI Yutao
. Gene Cloning and Expression Analysis of HMGR in Tea Plant Roots[J]. Journal of Tea Science, 2014
, 34(6)
: 583
-590
.
DOI: 10.13305/j.cnki.jts.2014.06.020
[1] 弓明软, 陈应龙, 仲崇禄. 菌根研究及应用[M]. 北京: 中国林业出版社, 1997: 21-23, 27-29, 55-60.
[2] Tunstall A C.Mycorrhiza in the plants[J]. Indian Tea Asso Sci Dep Quart, 1925: 159.
[3] Tunstall A C.Some observations on tea roots[J]. Indian Tea Asso Sci Dep Quart, 1930: 75478.
[4] Webster B N.Mycorrhiza[J]. Tea Quart, 1953, 24: 26-30.
[5] Satyanarayana G S, Venkatoramanan M N.Mycorrhiza associate with tea and weeds from soils of N. E. India[C]//Plant protection-proceedings of the second annual symposiam on plantation crops, PLACROSYM standing committee. 1979: 84-88.
[6] 李名君, 束际林. 茶树菌根的研究[J]. 中国茶叶, 1984, 6(4): 18-19.
[7] 林智. VA菌根对茶树生长和矿质元素吸收的影响[J]. 茶叶科学, 1993, 13(1): 15-20.
[8] 刘柏玉, 雷泽周. VA菌根对茶苗生长及养分吸收的影响[J]. 中国茶叶, 1995, 17(5):6-7.
[9] 周隆义, 季瑞琰. 茶树VA菌根的生物效应与土壤施磷量的关系[J]. 茶业通报, 1993(2): 1-4.
[10] 束际林, 李名君. 茶树VA菌根的生理学效应研究[J]. 茶叶科学, 1987, 7(1): 7-14.
[11] 韩文炎, 译. VA菌根与不同品种茶树生长的关系[J]. 中国茶叶, 2003, 25(4): 35.
[12] Javot H, Pumplin N, Harisson M J.Phosphate in the arbuscular mycorrhizal transport properties and regulatory roles[J]. Plant Cell Environment, 2007, 30(3): 310-322.
[13] Nagy R, Karandashov1 V, Chague V, et al. The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species[J]. Plant Journal, 2005, 42(2): 236-250.
[14] Karandashov V, Nagy R, Wegmuller S, et al. Evolutionary conservation of a phosphate transporter in the arbuscular mycorrhizal symbiosis[J]. Proc Natl Acad Sci USA, 2004, 101: 6285-6290.
[15] Güimil S, Chang H S, Zhu T, et al. Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization[J]. Proc Natl Acad Sci USA, 2005, 102(22): 8066-8070.
[16] Glassop D, Smith S E, Smith F W.Cereal phosphate transporters associated with the mycorrhizal pathway of phosphate uptake into roots[J]. Planta, 2005, 222(4): 688-698.
[17] Maeda D, Ashida K, Iguchi K, et al. Knockdown of an arbuscular mycorrhiza-inducible phosphate transporters gene of Lotus japonicus sppresses mutualistic symbiosis[J]. Plant Cell Physiol, 2006, 47(7): 807-817.
[18] 李远华, 郑芳, 倪德江, 等. 茶树接种VA菌根的生理特性研究[J]. 茶叶科学, 2011, 31(6): 504-512.