Welcome to Journal of Tea Science,Today is
Basic Information about the Journal
Journal title: Journal of Tea science
Inscription of journal title: ZHU De
Responsible Institution: China Association for Science and Technology
Sponsored by: China Tea Science Society
Tea Research Institute, Chinese Academy of Agricultural Science
Editing and Publishing: Editorial Office, Journal of Tea science
Start time: 1964
No. of issues: Bi-monthly
Two-Dimensional Code of Tea Science Website
Cooperation
Download

Top Read Articles

    Published in last 1 year |  In last 2 years |  In last 3 years |  All
    Please wait a minute...
    For Selected: Toggle Thumbnails
    Research Progress of Tea Quality Evaluation Technology
    LIU Qi, OUYANG Jian, LIU Changwei, CHEN Hongyu, LI Juan, XIONG Ligui, LIU Zhonghua, HUANG Jian'an
    Journal of Tea Science    2022, 42 (3): 316-330.   DOI: 10.13305/j.cnki.jts.20220416.001
    Abstract407)      PDF(pc) (812KB)(392)       Save
    The quality of tea is the embodiment of the shape and inner quality of tea, and evaluating the quality of tea quickly and accurately is essential for tea trade and processing. Sensory evaluation, composition analysis and detection, and emerging technologies are the main tea quality evaluation techniques at present. This article summarized the research progress of three major evaluation technologies in recent years, and focused on the development trend of emerging technologies. Sensory evaluation is greatly influenced by subjective factors, but combined with quantitative description and analysis can reduce the influence of subjectivity. Component analysis detection has high threshold, difficult operation, time-consuming and labor-consuming, and the results obtained are relatively accurate. Emerging technologies are simple, fast, and non-destructive, but at present they cannot achieve satisfactory accuracy. In the tea product diversification today, only multi-dimensional comprehensive utilization of multiple methods can quickly and efficiently detect the quality of tea, and provide assistance for the healthy and efficient development of the tea industry.
    Reference | Related Articles | Metrics
    Research Progress of Tea Beer
    CHEN Dequan, ZHU Yan, ZOU Chun, YIN Junfeng, CHEN Jianxin, XU Yongquan
    Journal of Tea Science    2022, 42 (2): 169-178.   DOI: 10.13305/j.cnki.jts.2022.02.005
    Abstract398)      PDF(pc) (708KB)(237)       Save
    Tea beer is a new type of beer, obtained by adding tea or tea extract in the brewing process with the dual flavor characteristics of tea and beer. The development of tea beer would not only enrich the types, flavors, and physiological effects of beer, but also improve the utilization rate and additional value of tea resources and benefit for the common development of tea and beer industries. However, the studies of tea beer on pretreatment of raw materials, fermentation and clarification technologies were still not mature. Therefore, this paper systemically summarized the processing technologies of tea beer, including the pretreatment of raw materials, fermentation and clarification technologies. Based on that, we made the prospects for the future of tea beer, aiming to provide a reference for the research and development of tea beer in depth.
    Reference | Related Articles | Metrics
    Effects of Intercropping Functional Plants on the Ecosystem Functions and Services in Tea Garden
    SHI Fan, HUANG Hongjing, CHEN Yanting, CHEN Lilin
    Journal of Tea Science    2022, 42 (2): 151-168.   DOI: 10.13305/j.cnki.jts.2022.02.011
    Abstract388)      PDF(pc) (1493KB)(278)       Save
    As one of the main measures of habitat management, reasonable intercropping of functional plants in tea garden can shade tea bushes and keep them warm, conserve water and soil, increase fertility and promote growth, as well as maintain micro-habitat stability. It also can attract natural enemies, repel pests, reduce the damage caused by diseases, insects, and weeds in tea garden, therefore it is beneficial for improving the quality and efficiency of the tea. However, unreasonable intercropping will destroy the micro-habitat of tea garden, compete for nutrients, thus affecting the growth of tea plants. In this paper, the intercropping of functional plants and their effects on the ecosystem functions and services in tea garden in recent years were reviewed. These effects mainly included the species, management models, functions and common problems with the most widely used functional plants, as well as the regulatory effects of intercropping of functional plants on the growth and development of tea plants, tea quality and yield, and tea pests. The ultimate goal of this paper was to provide guidance for the application of intercropping measures to promote the comprehensive regulation of pests in tea garden, and enhance the ecosystem functions and services of tea garden.
    Reference | Related Articles | Metrics
    Clinical Trial on the Effect of Drinking Jinhua Xiangyuan Tea for 3 Months on the Improvement of Glucose and Lipid Metabolism in A Small Sample Hyperlipidemia Population
    SUN Ying, CHEN Xin, YANG Hua, YING Jian, SHAO Danqing, LÜ Xiaohua, XIAO Jie, CHEN Zhixiong, LI Song, QIN Junjie, ZHENG Bin, GAO Jianshe
    Journal of Tea Science    2022, 42 (4): 561-576.   DOI: 10.13305/j.cnki.jts.2022.04.010
    Abstract385)      PDF(pc) (1135KB)(126)       Save
    This study is aimed at investigating the clinical effect of drinking Jinhua Xiangyuan tea for 3 months on the glucose and lipid metabolism in a small sample patients with hyperlipidemia (with/without non-alcoholic fatty liver). Jinhua Xiangyuan tea was produced by the new process using Eurotium cristatum. In this study, before-and-after control design was used. The body composition (body weight, BMI, waist hip ratio, percentage of body fat, visceral fat grade), blood biochemical indicators (fasting blood glucose, uric acid, blood lipid), fatty liver, and gut microbiota were examined before and after the test. After drinking Jinhua Xiangyuan tea for 3 months, the body weight, BMI, percentage of body fat, visceral fat grade, serum total cholesterol, low-density lipoprotein cholesterol, and fasting blood glucose of 38 volunteers were significantly reduced (P<0.05). Fatty liver was less severe. Gut microbiota’s diversity and richness were increased. The relative abundance of Phascolarctobacterium, Ruminococcus, Haemophilus and Veillonella were increased, and Dialister and Butyricimonas were decreased. Jinhua Xiangyuan tea could increase the relative abundance of short-chain fatty acid-producing bacteria, increasing short-chain fatty acids, and improving insulin resistance, then improving glucose and lipid metabolism. The results of this study still need to be further confirmed by more rigorous long-term experimental observation.
    Reference | Related Articles | Metrics
    Research Advances of Fluoride Accumulation Mechanisms in Tea Plants (Camellia sinensis)
    XING Anqi, WU Zichen, XU Xiaohan, SUN Yi, WANG Genmei, WANG Yuhua
    Journal of Tea Science    2022, 42 (3): 301-315.   DOI: 10.13305/j.cnki.jts.20220416.003
    Abstract373)      PDF(pc) (876KB)(268)       Save
    Camellia sinensis (L.) O. Kuntze is a hyper fluoride (F) accumulation plant, whose F content in tea leaves is much higher than other plants, without any toxic symptoms. However, F is not an essential element for tea plant growth, and under high F stress, F affects the normal growth of plants by destroying the cell structure and inhibiting enzyme activities. In order to provide a theoretical basis for the future study of F accumulation in tea plants, the research progresses in the absorption, enrichment and accumulation/detoxification mechanisms of F in tea plants were reviewed.
    Reference | Related Articles | Metrics
    Comparison on Chemical Components of Yunnan and Fuding White Tea Based on Metabolomics Approach
    GAO Jianjian, CHEN Dan, PENG Jiakun, WU Wenliang, CAI Liangsui, CAI Yawei, TIAN Jun, WAN Yunlong, SUN Weijiang, HUANG Yan, WANG Zhe, LIN Zhi, DAI Weidong
    Journal of Tea Science    2022, 42 (5): 623-637.   DOI: 10.13305/j.cnki.jts.20220601.001
    Abstract326)      PDF(pc) (1197KB)(179)       Save
    In order to investigate the differences in chemical compositions between Yunnan white tea and Fuding white tea, 9 Yunnan white tea samples and 6 Fuding white tea samples were studied by ultrahigh performance liquid chromatography-quadrupole orbitrap mass spectrometer (UHPLC-Q-Exactive/MS) combined with sensory evaluation to analyze the non-volatile chemical components of white tea in two places. A total of 109 compounds were structurally identified in this study, including catechins, dimeric catechins, flavonoid glycosides (flavone/flavonol-O-glycosides and flavone/flavonol-C-glycosides), N-ethyl-2-pyrrolidinone-substituted flavan-3-ols (EPSFs), amino acids, phenolic acids, organic acids, alkaloids, lipids, et al. The partial least squares discriminant analysis and heatmap analysis show that there were distinct differences in the chemical components between Yunnan white tea and Fuding white tea. A total of 46 compounds showed significant differences between groups (P<0.05). The contents of epicatechins, dimericcatechins, flavonoid glycosides (kaempferol-3-galactoside, quercetin-3-glucoside, etc.), phenolic acids, organic acids, and lipids were relatively high in Yunnan white tea; while the contents of nonepicatechins, flavonoid glycosides (quercetin-3-galactoside, myricetin-3-galactoside, etc.), amino acids and alkaloids were relatively higher in Fuding white tea, which was speculated to be related with tea cultivars and drying processes. This study provided a theoretical basis for the understanding and recognition of the difference in the chemical substance and flavor quality of different white tea between two places, as well as the identification of white tea origins.
    Reference | Related Articles | Metrics
    Identification and Transcriptional Regulation of CLH Gene Family and Expression Analysis in Albino Tea Plants (Camellia sinensis)
    WANG Tao, WANG Yiqing, QI Siyu, ZHOU Zhe, CHEN Zhidan, SUN Weijiang
    Journal of Tea Science    2022, 42 (3): 331-346.   DOI: 10.13305/j.cnki.jts.2022.03.003
    Abstract283)      PDF(pc) (1540KB)(97)       Save
    Chlorophyllase (CLH) is the key enzyme in the degradation of chlorophyll, stripping its phytol to form dephytolithochlorophyll a. The full-length cDNA sequences of three CsCLHs genes were obtained from the second leaves of albino tea cultivar ‘Baijiguan', and bioinformatics analysis was performed. The results show that the three CsCLH genes could be divided into two subfamilies. The full length of CsCLHs was 894-975 bp, encoding 297-324 amino acids. The protein molecular weights were 31.99-34.91 kDa. The isoelectric points were 4.89-7.61, and the instability coefficients were 38.94-48.24. CsCLH1.1 and CsCLH1.2 were unstable proteins, while CsCLH2 was a stable protein. The subcellular localization prediction results of Cell Ploc show that three CsCLH proteins were located in chloroplast, while the results of Wolf Psort show that CsCLH1.1 and CsCLH1.2 were located in cytoplasm and CsCLH2 was located in chloroplast. The qRT-PCR results on the ‘Baijiguan' leaves indicated that expressions of CsCLHs were inhibited by shading treatment and light induced CsCLHs' expressions. Expression pattern analysis of CsCLHs shows that CsCLH1s were highly expressed in the albino cultivars. In addition, it was identified that CsCDF5 could bind to the CsCLH1.1 and CsCLH2 promoters according to the yeast one hybrid system. In conclusion, CsCLHs in albino tea leaves might be involved in chlorophyll degradation and play an important role in the process of albino leaf, which provided a reference for further investigation in the function of the CLH gene family and the albinism of leaves in tea plants.
    Reference | Related Articles | Metrics
    Research on the Changes of China's Tea Production Layout
    WU Qinyao, YANG Jiangfan, LIN Cheng, GUAN Xi
    Journal of Tea Science    2022, 42 (2): 290-300.   DOI: 10.13305/j.cnki.jts.20211210.001
    Abstract278)      PDF(pc) (554KB)(157)       Save
    Based on the agricultural location theory, comparative advantage theory and rational "economic man" hypothesis, a theoretical analysis framework taking cultural factors and factors affecting the changes in China's tea production layout into account was constructed using data from 16 tea-producing provinces across the country from 1993 to 2018. The panel data of the district expounded the characteristics and laws of the changes in China's tea production layout, and clarified the main influencing factors and driving mechanisms that affected the changes in China's tea production layout. The results show that: (1) After the reform and opening up, from 1993 to 2018, China's tea industry had agglomerated and expanded in terms of production scale, and the tea production space had changed significantly, with significant differences in characteristics. (2) The layout of tea yield was based on natural resources, consumer demand, and culture. The factors like technological progress and social and economic factors had a profound impact on the layout of tea production over time, and resulted in differences in tea-producing provinces across the country. (3) Natural resources and technological progress were the basis and prerequisite for changes in the layout of tea production. The decisive conditions for changes in the layout of tea production were consumer demand and socio-economic factors. Brand building and policy support were also important supplementary factors for the current development of the tea industry. On this basis, this article proposed to optimize the layout of tea production according to local conditions, strengthen the protection of land resources, rationally plan the area of tea gardens, maintain the continuous and stable development of the tea industry, attach importance to technological innovation and application to improve the level of tea yields and use the inter-regional interaction of tea production to achieve policy recommendations such as improving the overall efficiency of the tea industry.
    Reference | Related Articles | Metrics
    Recent Advances in Catechin Biomedical Nanomaterials
    YU Rongxin, ZHENG Qinqin, CHEN Hongping, ZHANG Jinsong, ZHANG Xiangchun
    Journal of Tea Science    2022, 42 (4): 447-462.   DOI: 10.13305/j.cnki.jts.2022.04.004
    Abstract272)      PDF(pc) (2659KB)(184)       Save
    Catechins are a kind of bioactive substances rich in tea, which have the functions of anti-oxidation, anti-tumor, anti-virus, anti-inflammatory and immune regulation. However, due to the high activity of phenolic hydroxyl groups, catechins are easy to lose in vitro and in vivo activities, resulting in lower bioavailability. The recent development of nanobiotechnologies is expected to solve the problem of low bioavailability of catechins through ligand design, accurate synthesis and intelligent regulation, which can expand its application in the field of life and health. In this review, a summary on the progress of catechin biomedical nanomaterials in recent years, including the anti-tumor, antibacterial, anti-inflammatory, drug delivery and anti-virus activities, was firstly made. Later, the construction and biological mechanism of catechin biomedical nanomaterials were discussed in detail. Finally, future perspectives on the design and application of novel catechin nanomaterials were provided.
    Reference | Related Articles | Metrics
    Effects of Light Waves on the Aroma Substances of Fresh Tea Leaves in Summer and Autumn During Spreading and the Quality of Final Green Tea
    LIU Jianjun, ZHANG Jinyu, PENG Ye, LIU Xiaobo, YANG Yun, HUANG Tao, WEN Beibei, LI Meifeng
    Journal of Tea Science    2022, 42 (4): 500-514.   DOI: 10.13305/j.cnki.jts.20220520.001
    Abstract256)      PDF(pc) (1983KB)(130)       Save
    The rough aroma is an important factor affecting the quality of summer and autumn green tea. In order to improve the quality of summer and autumn green tea, this experiment took Fuding Dabai tea as the research object, and irradiated fresh leaves in vitro with red light, yellow light, blue light and purple light, and the nature light was used as the control. Headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) was used to qualitatively and quantitatively detect the volatile components of the fresh leaves. Supplemented by Hierarchical Cluster Analysis (HCA), Principal Component Analysis (PCA) and Partial least squares discriminant analysis (PLS-DA), the optimal light wave and key substances that promote the formation of tea's floral and fruity aroma were identified. The results show that different light qualities had significant effects on the types and contents of aroma substances. A total of 36 aroma substances were identified from 5 samples, of which alcohols and terpenes were the most numerous, and the average content of esters was the highest, followed by alcohols. Red light was the best light to promote the accumulation of tea aroma components. 3-Carene, β-Myrcene and phenylethyl alcohol were the key substances for improving the aroma in tea leaves. All light treatments could promote the free amino acids and caffeine in fresh leaves, and reduce the ratio of phenol to ammonia. After light treatment, the fresh and floral flavor of green tea was more obvious, and the taste was fresh. The comprehensive score of the tea samples treated with red light was the best. The research has shown that red light irradiation of fresh tea leaves in summer and autumn could increase the types and contents of tea aroma substances, significantly improve the key substances in the formation of flower and fruit aroma, and increase the freshness of tea soup.
    Reference | Related Articles | Metrics
    Nomenclature, Typification, and Natural Distribution of Camellia sinensis var. assamica (Theaceae)
    ZHAO Dongwei
    Journal of Tea Science    2022, 42 (4): 491-499.   DOI: 10.13305/j.cnki.jts.2022.04.007
    Abstract252)      PDF(pc) (547KB)(132)       Save
    Camellia sinensis var. assamica (Theaceae) is a globally cultivated plant for beverages. The efforts to clarify its nomenclature and type are reviewed here. Griffith proposed Camellia sect. Thea (L.) Griff. as a name at new rank rather than a new taxon in 1854 based on Art. 41.4 of the Shenzhen Code. Camellia sealyana T.L. Ming is excluded from sect. Thea because of its abaxially punctate leaves and free styles. Masters did not validly publish Thea assamica in 1844, but this Latin name was validated in 1847 by Hooker. Steenis first proposed the new combination, Camellia sinensis (L.) Kuntze var. assamica (Hook.) Steenis, in 1949, and this is the accurate scientific name for Assam tea. The specimen, W. Griffith s.n. (K000939670) at herbarium K, was designated as the neotype of T. assamica in 2021. Seven known heterotypic synonyms of C. sinensis var. assamica and their protologues and types were summarized here. Although Darlington and Ammal proposed the new combination, C. assamica, in 1945, Assam tea is, however, widely accepted as a variety of C. sinensis based on morphological, geological, and phylogenetic analyses. If the specific rank was applied, the earlier heterotypic name of Assam tea, C. theifera published in 1838, would gain priority over C. assamica. Then the widely used epithet “assamica” might be conserved under Art. 14 of the Shenzhen Code. The natural distribution of Assam tea was summarized based on the comprehensive examination of specimens collected from China, India, Laos, Myanmar, Thailand, and Vietnam. The status of natural populations of Assam tea in each country was discussed with the different applications of utilization and conservation.
    Reference | Related Articles | Metrics
    Screening and Identification of Chaperone CsHIPP26.1 Chelating Ions in Tea Cultivar ‘Huangjinya’
    LIU Fuhao, FAN Yangen, WANG Yu, MENG Fanyue, ZHANG Lixia
    Journal of Tea Science    2022, 42 (2): 179-186.   DOI: 10.13305/j.cnki.jts.2022.02.006
    Abstract245)      PDF(pc) (1284KB)(53)       Save
    Heavy metal-associated isoprenylated plant proteins (HIPPs) is an important metallochaperones due to its unique heavy metal binding domains (HMA) and the structural characteristics of isoprenylation motif. In order to identify the chelating ions of CsHIPP26.1 protein in Camellia sinensis (L.) cv. ‘Huangjinya’, the pET-32a-CsHIPP26.1 recombinant plasmids and empty carriers were respectively transferred into E. coli BL21, and then were cultured in LB liquid culture medium with 4 mol·L-1 single metal ions (CuCl2, ZnCl2, MgCl2, FeCl3, CaCl2) or multiple metal ions and 1 mmol·L-1 IPTG. The growth of E. coli in different ion media was observed, meanwhile the fusion target protein was obtained by His-tag protein purification magnetic bead. The contents of metal ions in fusion protein were analyzed by atomic absorption spectrophotometer, and the number of ions chelated by the protein was calculated. The results show that CsHIPP26.1 protein was only chelated with Zn2+ and Cu2+, and the chelating ability to Zn2+ was significantly higher than Cu2+. Based on the molar ratio of its bound metal ions to the target protein, the maximum number of Zn2+, Cu2+ chelated by CsHIPP26.1 protein was 2 and 1, respectively.
    Reference | Related Articles | Metrics
    Responses of Different Tea Cultivars (Strains) to Half Fertilization
    SHU Zaifa, ZHENG Shenghong, SHAO Jingna, ZHOU Huijuan, JI Qingyong, LIU Yu, HE Weizhong, WANG Liyuan
    Journal of Tea Science    2022, 42 (2): 277-289.   DOI: 10.13305/j.cnki.jts.2022.02.009
    Abstract223)      PDF(pc) (529KB)(88)       Save
    In this study, a field experiment was conducted to compare five tea cultivars (strains) under half fertilization and conventional fertilization for two years. The response of half fertilization to tea sprouting period, yield and quality was studied. The results show that compared with the conventional fertilization, half fertilization had little effect on the sprouting period of five tea cultivars (strains). Under half fertilization, the tea yield, free amino acid, caffeine and theanine contents decreased, while the content of polyphenols, ester catechin, non-ester catechin and phenol-ammonia ratio increased. The sensory evaluation results were consistent with the chemical component changes in the tea. Compared with the conventional fertilization, the average yield reduction of Zhongming 6, Zhongming 7, Zhongming 192, Wanghai Tea 1 and Longjing 43 under half fertilization were 4.19%, 12.09%, 2.13%, 22.59% and 3.29% respectively. Under half fertilization, Wanghai Tea 1 had an obvious response, Longjing 43 and Zhongming 7 had relatively significant responses, and Zhongming 6 and Zhongming 192 had little response. Except the yield of Wanghai Tea 1 decreased significantly, the tea yield and quality show no obvious change in the rest tea cultivars (strains) under different fertilization treatments. To a certain extent, the results indicate that half fertilization would not significantly affect the benefit of tea gardens within 2 years. The results also provided a preliminary theoretical support for the implementation of weight loss and stability of tea garden benefits.
    Reference | Related Articles | Metrics
    The Control Efficiency of Afidopyropen to Tea Green Leafhoppers and Evaluation of Residue in Tea
    GUO Mingming, LI Zhaoqun, LIU Yan, RAO Fuqiang, YU Jiawei, WU Luchao, ZHOU Li, CHEN Zongmao
    Journal of Tea Science    2022, 42 (3): 358-366.   DOI: 10.13305/j.cnki.jts.20220506.002
    Abstract214)      PDF(pc) (505KB)(84)       Save
    Afidopyropen is a novel biogenic insecticide derived from the natural fermentation product. This study aimed to evaluate the feasibility of afidopyropen for tea green leafhoppers (Empoasca onukii Matsuda) control and tea safety after the application of afidopyropen in tea garden. The dosage field trials and demonstration trials were conducted to evaluate the control efficiency of afidopyropen to tea green leafhoppers and the terminal residues in tea. The results of the dosage field trials in 2 locations show that 50 g·L-1 afidopyropen dispersible concentrate was more effective against the green leafhoppers than chlorfenapyr which was commonly used pesticide for the green leafhoppers control. At the dosages of 15.00 g·hm-2 and 22.50 g·hm-2, control efficiencies were 88.6%-93.4% on the 1st day after treatment and 75.5%-85.5% on the 14th day, demonstrating a quick control effect and good persistence. At the dosage of 18.75 g·hm-2 in 7 locations, the control efficiencies were 88.9%-100.0% on the 3rd day after treatment, and 60.2%-100.0% on the 14th day, which were better than the local commonly used pesticides. The terminal residues of afidopyropen in green tea ranged from 0.17-0.64 mg·kg-1 on the 7th day after the application, the leaching rate of afidopyropen from dry tea to tea brew ranged from 17.1%-19.1% during the brewing process, and the risk quotient values were far less than 1, indicating a very low health risk caused by the afidopyropen intake through drinking tea. In conclusion, afidopyropen is suitable for resistance management and comprehensive management of tea green leafhoppers with the advantages of low dosage, high-efficiency and low-healthy risk for tea consumer.
    Reference | Related Articles | Metrics
    Genetic and Phylogenetic Analysis for Germplasm Resources of Camellia sinensis from Wuzhou City
    WANG Liubin, HUANG Liyun, TENG Cuiqin, WU Liyun, CHENG Hao, YU Cuiping, WANG Liyuan
    Journal of Tea Science    2022, 42 (5): 601-609.   DOI: 10.13305/j.cnki.jts.2022.05.004
    Abstract203)      PDF(pc) (701KB)(126)       Save
    Based on the SSR markers, the genetic diversity and genetic relationship of the germplasm resources of tea plants from Liubao town and Nandu town were fully analyzed in this study. The core molecular markers for the efficient identification of these germplasm resources were successfully screened. The main results show that: (1) 98 alleles were amplified from 17 pairs of SSR primers, and each pair of SSR primers amplified 3-8 alleles, with an average of 5.764 7 alleles per locus. (2) Totally 8 core markers were selected from 17 SSR markers to distinguish each germplasm resource. (3) The average number of alleles (4.647 1), genotypes per marker (7.000 0), genetic diversity (0.675 4), and the polymorphic information content (0.628 3) of native tea trees in Liubao town were higher than wild tea trees in Nandu, and close to the cultivated population. (4) Cluster analysis shows that the majority germplasm resources from Liubao town were clustered together except for several tea plants grouped with large-leaf tea cultivars from Yunnan province and a few resources were grouped into the same cluster with tea cultivars from Zhejiang and Guizhou provinces. The wild tea germplasm resources from Nandu town were grouped into the same cluster with two germplasm materials from Liubao town. In conclusion, it was showed that there are rich tea germplasm resources with high genetic diversity in Wuzhou city. This study might lay a solid foundation for the further studies to develop and utilize these tea resources.
    Reference | Related Articles | Metrics
    Effects of Air Conditions Preset for Withering on Flavor Quality and Chemical Profiles of White Teas
    ZHANG Yinggen, XIANG Lihui, CHEN Lin, LIN Qingxia, SONG Zhenshuo, WANG Lili
    Journal of Tea Science    2022, 42 (4): 525-536.   DOI: 10.13305/j.cnki.jts.2022.04.011
    Abstract200)      PDF(pc) (851KB)(96)       Save
    To realize the quality control of white tea based on withering environment, indoor temperature and relative humidity were preset at (30±2)℃ with RH (35±5)% or (20±2)℃ with RH (55±5)% to investigate the effects of four different air conditions on the sensory quality and chemical profiles of 6 tea cultivars (Camellia sinensis), including Fuan-dabaicha, Huangdan, Huangguanyin, etc. According to whether the indoor temperature and relative humidity were mutually switched at the point when the weight loss rate of tea shoots reached 45% during the whole withering procedure, the levels of each withering treatment were named as Low-Low, Low-High, High-Low and High-High, respectively. The results show that the flavor quality of white tea was mainly determined by the physical and chemical characteristics of raw materials (tea cultivars). White teas obtained under Low-Low treatment had a slightly light taste and a little grassy flavor, while the white teas from the same tea cultivars had the similar quality characteristics in appearance and soup color when they were treated with High-High and Low-High, just as High-Low and Low-Low during withering. The ultraviolet and near-infrared spectra of all white tea samples had similar fluctuations, and the near-infrared spectra could provide more abundant chemical information for their pattern recognition. The contents of gallic acid, epicatechin gallate, gallocatechin, caffeine and theobromine in white tea samples were different among tea cultivars, but withering treatment had no significant effect on the contents of detected biochemical components (catechins and purine alkaloids). Moreover, principal component analysis based on ultraviolet spectra, especially near-infrared spectra or biochemical compositions of white tea samples could better discriminate white tea samples into the same groups according to their raw materials (tea cultivars). The effects of different air conditions on the profiles of spectra or biochemical compositions were exclusively drowned by the characteristics of raw materials. However, the influence of withering treatment on the profiles of near-infrared spectra and biochemical compositions of white tea samples manufactured from different raw materials could be effectively revealed by multilevel principal component analysis, and the classification and identification results of all white tea samples were almost consistent with the characteristics of sensory quality. These facts could provide a reference for the technological regulation of white tea flavor quality.
    Reference | Related Articles | Metrics
    Variation of Oil Content in Tea Seed Kernel and Fatty Acid Compositions and Contents in Tea Seed Oil among Different Culitivars and Regions
    XIANG Jing, LIANG Yuerong, ZHAO Dong, WANG Kairong, LU Jianliang, YUAN Ming'an, ZHENG Xinqiang
    Journal of Tea Science    2022, 42 (2): 233-248.   DOI: 10.13305/j.cnki.jts.2022.02.008
    Abstract197)      PDF(pc) (784KB)(63)       Save
    In order to identify tea cultivars with high oil and rich fatty acid compositions, the relevant research on tea seeds of 49 tea cultivars from 9 provinces was carried out. The results show that the oil content of different cultivars were 16.29%-33.80%. The composition and content of fatty acids in tea seed oil were determined by gas chromatography. A total of 19 kinds of fatty acids were detected, among which oleic acid, linoleic acid, palmitic acid, stearic acid and α-linolenic acid were the main fatty acids accounting for 46.00%-72.64%, 8.05%-31.05%, 12.02%-18.80%, 2.16%-5.34% and 0.36%-1.20% of the total fatty acids content, respectively. The average ratio of saturated fatty acid, monounsaturated fatty acid and polyunsaturated fatty acid content in different cultivars of tea seed oil was generally 1∶3.04∶1.40. The correlation analysis of fatty acid components shows that cis-oleic acid was negatively correlated with trans-oleic acid and docosahexaenoic acid, while cis-oleic acid was positive correlated with α-linolenic acid and palmitic acid, and trans-oleic acid was negatively correlated with palmitic acid. There were significant differences in fatty acid content in different regions. Based on the present results, ‘Zhongcha 108’ from Zhejiang province, ‘Jinxuan’ from Guangdong province, ‘Xiangbolv 2’ and ‘Zhuyeqi’ could be used as good oil tea cultivars since their seeds have higher fatty acid contents and the proportion of three fatty acids types was more balanced. ‘Baoshan population’, ‘Xiangshanzao’, ‘Jinxuan’ from Hunan province, ‘Zijuan’ and ‘Yunnan wild tea population’ had high unsaturated fatty acid contents, which were suitable for making pharmaceutical and cosmetic oil.
    Reference | Related Articles | Metrics
    Functional Identification of CsbHLH024 and CsbHLH133 Transcription Factors in Tea Plants
    LIU Renjian, WANG Yuyuan, LIU Shaoqun, SHU Canwei, SUN Binmei, ZHENG Peng
    Journal of Tea Science    2022, 42 (3): 347-357.   DOI: 10.13305/j.cnki.jts.2022.03.001
    Abstract195)      PDF(pc) (1629KB)(68)       Save
    Tea plant leaf trichomes contain various secondary metabolites and play an important role in the tea appearance quality as well as the response of tea plants to biotic and abiotic stresses. In this study, the function of leaf trichome-related genes CsbHLH024 and CsbHLH133 were analyzed using Bimolecular Fluorescent Complimentary (BiFC), GUS staining and overexpression experiments. The results show that CsbHLH024/CsbHLH133 and CsTTG1 could interact in plants, and their promoters could drive downstream gene expression in leaf tissues. They were further transformed into wild Arabidopsis thaliana (Col) and corresponding homozygous mutants, respectively to get overexpression lines. Both genes could affect the leaf trichome formation in Arabidopsis thaliana, restore the phenotype of the mutants, and induce the expression levels of trichome-related genes. This study provided a theoretical basis for further research on the molecular regulation mechanism of trichome formation in tea leaves.
    Reference | Related Articles | Metrics
    Analysis on the Competitiveness and Complementarity of Tea Trade between China and RCEP Members
    LI Zheng, LIU Ding, HUO Zenghui, CHEN Fuqiao
    Journal of Tea Science    2022, 42 (5): 740-752.   DOI: 10.13305/j.cnki.jts.2022.05.010
    Abstract192)      PDF(pc) (532KB)(76)       Save
    The signing of RCEP had facilitated intra-regional trade liberalization. It is of great practical significance to investigate the impact of RCEP on China's tea import and export trade. Based on the tea trade data of China and other RCEP members from 2011 to 2020, combining the analysis of the current situation of intra-regional import and export trade, this study calculated several indicators such as revealed comparative advantage index (RCA), export similarity index (ESI), trade complementarity index (TCI), trade intensity index (TI) and intra-industry trade index (GL) to measure the competitiveness and complementarity of bilateral tea trade. The results indicate that the tea export competitions between China, Vietnam and Indonesia were more prominent. China's tea export had long-term comparative advantages, and the comparative advantages of green tea export were obvious, while the comparative advantages of China's export of large packaged black tea lag behind Indonesia and Vietnam. China's tea export was highly similar to Japan, Thailand, Singapore and South Korea, and had strong competitiveness in export structure. In addition, the tea trade between China and New Zealand, Brunei, Australia was highly complementary. China's tea trade with Indonesia, New Zealand and Vietnam was mainly intra-industry trade in some years, while with Australia and Myanmar was mainly inter-industry trade. Finally, under the framework of RCEP agreement, strategies including expanding potential markets, dealing with technical barriers to trade and optimizing export structure were proposed.
    Reference | Related Articles | Metrics
    Characterization of the Key Aroma in Corn-scented Congou Black Tea Manufactured from Camellia nanchuanica by Sensory Omics Techniques
    OUYANG Ke, ZHANG Cheng, LIAO Xueli, KUN Jirui, TONG Huarong
    Journal of Tea Science    2022, 42 (3): 397-408.   DOI: 10.13305/j.cnki.jts.20220506.003
    Abstract189)      PDF(pc) (1290KB)(80)       Save
    Camellia nanchuanica is endemic to Nanchuan district, Chongqing and has a high development value. In this study, the characteristic aroma of corn-scented Congou black tea from Camellia nanchuanica was analyzed by headspace-solid phase microextraction, gas chromatography-mass spectrometry (HS-SPME-GC/MS), gas chromatography-olfactometry (GC-O), odor activity value (OAV) and aroma character impact value (ACI). The results show that 22 key aroma compounds with OAVs≥1 were identified in the corn-scented black tea. Dimethyl sulfide had the highest OAV (1 187.32), and its ACI was 51.56%. A total of 26 odor-active compounds were perceived by GC-O. Dimethyl sulfide had a higher olfactory intensity, which had a “corn-like” odor. The results obtained by the OAV approaches and by GC-O method for key aroma identification were in good agreement. The importance of dimethyl sulfide in corn-scented black tea was verified by aroma recombination and omission test. Focusing on the analysis of the active aromas of corn-scented black tea would provide a theoretical basis for the quality control of this prized tea.
    Reference | Related Articles | Metrics