Welcome to Journal of Tea Science,Today is

Study on the Composition and Stability of Soil Aggregates with Different Tea Plantation Age

  • LIU Min-ying ,
  • ZHENG Zi-cheng ,
  • LI Ting-xuan
Expand
  • College of Resources and Environment, Sichuan Agricultural University, Ya’an 625014, China

Received date: 2011-12-23

  Revised date: 2012-04-16

  Online published: 2019-09-05

Abstract

For the purpose of investigating the effect of tea plantation age on the soil aggregates composition and stability, the field data of tea planted area was collected and laboratory analysis was conducted. Results showed that: (1) In the dry and wet treatments dynamic changes were observed in the amount of soil aggregates with the change in clay diameter. It was found that the decreasing trend in the amounts of micro-aggregates was followed a decrease-increase-decrease trend with the decrease in clay diameter under dry treatment, and show a decrease-increase-decrease trend with the decrease in clay diameter under wet treatment. The amounts of micro-aggregates were decreased with the decrease of clay diameter. Results showed that there were no significant effects of tea plantation age on the soil micro-aggregates. (2) When the clay diameter was >5mm, it was found that the increasing trend in the amount of dry and water-stable aggregates was followed an increase decrease trend with the increase of planting time and the maximum value was found after 20~22 years of tea plantation age. At the same time <5mm of clay diameter displayed an opposite trend as compare to >5mm diameter. (3) The maximum value of MWD, GMD of dry-aggregates and water-stable aggregates were found at tea plantation age of 20~22, and the result is opposite for aggregate fractal dimension value (D value) of soil aggregates. The differences among GMD, MWD and aggregate fractal dimension were highly significant under different planting age, which indicated that the tea plantation age showed significant effect on the soil aggregate stability.

Cite this article

LIU Min-ying , ZHENG Zi-cheng , LI Ting-xuan . Study on the Composition and Stability of Soil Aggregates with Different Tea Plantation Age[J]. Journal of Tea Science, 2012 , 32(5) : 402 -410 . DOI: 10.13305/j.cnki.jts.2012.05.007

References

[1] 严旭升. 土壤肥力研究方法[M]. 北京: 农业出版社, 1986: 29-35.
[2] 张保华. 长江上游典型区域森林土壤结构体形成和稳定性机制分析[J]. 聊城大学学报: 自然科学版, 2007, 20(1): 12-17.
[3] 石辉. 转移矩阵法评价土壤团聚体的稳定性[J]. 水土保持通报, 2006, 26(3): 91-95.
[4] 李阳兵, 谢德体. 不同土地利用方式对岩溶山地土壤团粒结构的影响[J]. 水土保持学报, 2001, 15(4): 122-125.
[5] Reichert J M, Norton J D.Aggregate stability and rain-impacted sheet erosion of air-dried and rewetted clayey surface soils under intense rain[J]. Soil Sci, 1994, 158(3): 159-169.
[6] Bernard Barthes, Eric Roose.Aggregate stability as an indicator of soil susceptibility to runoff and erosion: validation at several levels[J]. Catena, 2002, 47(2): 133-149.
[7] 戴全厚, 刘国彬, 翟胜, 等. 侵蚀环境退耕撂荒地水稳性团聚体演变特征及土壤养分效应[J]. 水土保持学报, 2007, 21(2): 61-65.
[8] 王国强, 毛艳玲. 土地利用方式对土壤团聚体组成及质量的影响[J]. 林业科技开发, 2008, 22(6): 60-63.
[9] 刘梦云, 常庆瑞, 安韶山, 等. 土地利用方式对土壤团聚体及微团聚体的影响[J]. 中国农学通报, 2005, 21(11): 247-250.
[10] Rattan L.Physical management of soils of the tropics:priorities for the 21st century[J]. Soil Science, 2000, 165(3): l9l-207.
[11] 赵世伟, 苏静, 杨永辉, 等. 宁南黄土丘陵区植被恢复对土壤团聚体稳定性的影响[J].水土保持研究, 2005, 12(3): 27-29.
[12] 龚伟, 胡庭兴, 王景燕, 等. 川南天然常绿阔叶林人工更新后土壤微团聚体分形特征研究[J]. 土壤学报, 2007, 44(3): 571-575.
[13] 李阳兵, 魏朝富, 谢德体, 等. 岩溶山区植被破坏前后土壤团聚体分形特征研究[J]. 土壤通报, 2006, 37(1): 51-55.
[14] 郑子成, 何淑勤, 王永东, 等. 不同土地利用方式下土壤团聚体中养分的分布特征[J]. 水土保持学报, 2010, 24(3): 170-174.
[15] 郑子成, 李廷轩, 张锡洲, 等. 不同土地利用方式下土壤团聚体的组成及稳定性研究[J].水土保持学报, 2009, 23(5): 228-231.
[16] 刘敏英, 郑子成, 李廷轩. 茶园土壤团聚体中微生物量碳、氮的分布特征[J]. 中国农业科学, 2011, 44(15): 3162-3168.
[17] 文倩, 赵小蓉, 陈焕伟, 等. 半干旱地区不同土壤团聚体中微生物量碳的分布特征[J].中国农业科学, 2004, 37(10): 1504-1509.
[18] 郭曼, 郑粉莉, 安韶山, 等. 应用Le Bissonnais法研究黄土丘陵区土壤团聚体稳定性[J].中国水土保持科学, 2010, 8(2): 68-73.
[19] 陈翠玲. 吸管法测定土壤机械组成及土壤微团聚体吸样时间的探讨[J]. 河南职技师院学报, 1994, 22(4): 69-70.
[20] 邱莉萍, 张兴昌, 张晋爱. 黄土高原长期培肥土壤团聚体中养分和酶的分布[J]. 生态学报, 2006, 26(2): 364-372.
[21] 杨培岭, 罗远培, 石元春. 用粒径的重量分布表征的土壤分形特征[J]. 科学通报, 1993, 38(20): 1896-1899.
[22] Six J, Eliott E T, Paustian K, et al. Aggregation and soil organic matter accumulation in cultivated and native grassland soils[J]. Soil Sci Soc Am J, 1998, 62(5): 1367-1377.
[23] 熊毅, 李庆逵. 中国土壤[M]. 北京: 科学出版社, 1987: 347-351.
[24] 梁爱珍, 张晓平, 杨学明, 等. 耕作对东北黑土团聚体粒级分布及其稳定性的短期影响[J]. 土壤学报, 2009, 46(1): 154-158.
[25] 杨建国, 安韶山, 郑粉莉. 宁南山区植被自然恢复中土壤团聚体特征及其与土壤性质关系[J]. 水土保持学报, 2006, 20(1): 72-75.
[26] 李月梅, 徐仁海, 曹广民. 青海省东部山区旱作农田土壤团聚体特征研究[J]. 土壤通报, 2006, 37(4): 640-643.
[27] 李小刚. 甘肃省电灌区土壤团聚体特征研究[J]. 土壤通报, 2000, 37(2): 263-269.
[28] 史奕, 张璐, 陈欣, 等. 不同经营方式对黑土水稳性团聚体组成及微粒有机质积累分布的影响[J]. 中国生态农业学报, 2005, 13(2): 122-124.
[29] 杨长明, 欧阳竹, 董玉红. 不同施肥模式对潮土有机碳组分及团聚体稳定性的影响[J].生态学杂志, 2005, 24(8): 887-892.
[30] 宁丽丹, 石辉, 周海军, 等. 岷江上游不同植被下土壤团聚体特征分析[J]. 应用生态学报, 2005, 16(8): 1405-1410.
[31] 俞慎, 何振立, 陈国潮, 等. 不同树龄茶树根层土壤化学特性及其对微生物区系和数量的影响[J]. 土壤学报, 2003, 40(3): 433-439.
[32] 薛冬, 姚槐应, 黄昌勇. 不同利用年限茶园土壤矿化、硝化作用特性[J]. 土壤学报, 2007, 44(2): 373-378.
Outlines

/