Welcome to Journal of Tea Science,Today is
Research Paper

Effects of Exogenous 24-Epibrassinolide on Photosynthetic Characteristics of Tea Plants

  • WAN Qiwen ,
  • YANG Ni ,
  • LI Yimin ,
  • HAN Miaohua ,
  • LIN Shijia ,
  • TENG Ruimin ,
  • ZHUANG Jing
Expand
  • Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China

Received date: 2020-09-02

  Revised date: 2020-10-28

  Online published: 2021-02-23

Abstract

With tea plant cultivar ‘Zhongcha 108’ as the test material, the effects of spraying EBR with different concentrations (0.10, 0.30, 0.50mg·L-1) on the chlorophyll content, stomatal aperture, photosynthetic gas exchange parameters and related gene expression of tea leaves were studied. The results show that spraying 0.10 and 0.30mg·L-1 EBR on leaves significantly increased the chlorophyll content of tea leaves on the first day after treatment. Compared with the control condition, chlorophyll content increased by 38.89% and 22.22%, respectively. On the third and fifth days after treatment, the stomatal aperture of tea leaves treated with 0.10 and 0.30mg·L-1 EBR increased significantly. On the first and fifth days after treatment, spraying EBR significantly increased the net photosynthetic rate of tea leaves. At the same time, EBR treatment could significantly up-regulate the expressions of genes involved in BR biosynthesis, chlorophyll biosynthesis, and carbon assimilation. These results indicate that exogenous EBR increased the chlorophyll content and stomata aperture of tea leaves by regulating the expression of related genes, which ultimately promoted the photosynthetic rate of tea plants.

Cite this article

WAN Qiwen , YANG Ni , LI Yimin , HAN Miaohua , LIN Shijia , TENG Ruimin , ZHUANG Jing . Effects of Exogenous 24-Epibrassinolide on Photosynthetic Characteristics of Tea Plants[J]. Journal of Tea Science, 2021 , 41(1) : 58 -70 . DOI: 10.13305/j.cnki.jts.2021.01.007

References

[1] Verma N, Shukla S.Impact of various factors responsible for fluctuation in plant secondary metabolites[J]. Journal of Applied Research on Medicinal and Aromatic Plants, 2015, 2(4): 105-113.
[2] Stirbet A, Govindjee. On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem Ⅱ: basics and applications of the OJIP fluorescence transient[J]. Journal of Photochemistry and Photobiology B: Biology, 2011, 104(1): 236-257.
[3] 杨志晓, 丁燕芳, 张小全, 等. 赤星病胁迫对不同抗性烟草品种光合作用和叶绿素荧光特性的影响[J]. 生态学报, 2015, 35(12): 4146-4154.
Yang Z X, Ding Y F, Zhang X Q, et al. Impacts of Alternaria alternata stress on characteristics of photosynthesis and chlorophyll fluorescence in two tobacco cultivars with different resistances [J]. Acta Ecologica Sinica, 2015, 35(12): 4146-4154.
[4] Shimazaki K, Doi M, Assmann S M, et al. Light regulation of stomatal movement [J]. Annual Review of Plant Biology, 2007, 58(1): 219-247.
[5] 曹刚. 不同LED光质对黄瓜和结球甘蓝苗期生长、光合特性及内源激素的影响[D]. 兰州: 甘肃农业大学, 2013.
Cao G.Effects of different LED light qualities on cucumber and head cabbage seedling growth, photosynthetic characteristics and endogenous hormones [D]. Lanzhou: Gansu Agricultural University, 2013.
[6] 张子臻. 外源油菜素甾醇类化合物对甜菜产质量的影响[D]. 呼和浩特: 内蒙古农业大学, 2019.
Zhang Z Z.Effect of exogenous brassinosteroids on yield and quality of sugar beet ( Beta Vulgaris L.) [D]. Hohhot: Inner Mongolia Agricultural University, 2019.
[7] 张爱敏, 周国顺, 付丽军, 等. 低温胁迫下油菜素内酯对黄瓜种子萌发及幼苗生长的影响[J]. 中国瓜菜, 2019, 32(12): 31-36.
Zhang A M, Zhou G S, Fu L J, et al.Effects of brassinosteroids on seed germination and seedling growth of cucumber under low temperature stress[J]. China Cucurbits and Vegetables, 2019, 32(12): 31-36.
[8] Yu J Q, Huang L F, Hu W H, et al.A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus[J]. Journal of Experimental Botany, 2004, 55(399): 1135-1143.
[9] Dhaubhadel S, Browning K S, Gallie D R, et al.Brassinosteroid functions to protect the translational machinery and heat-shock protein synthesis following thermal stress[J]. Plant Journal, 2002, 29(6): 681-691.
[10] Babalik Z, Demirci T, Aşcı Ö A, et al.Brassinosteroids modify yield, quality, and antioxidant components in grapes(Vitis vinifera cv. Alphonse Lavallée)[J]. Journal of Plant Growth Regulation, 2020(39): 147-156.
[11] 汪季涛. 油菜素内酯调控番茄农药降解的生理与分子机制[D]. 杭州: 浙江大学, 2010.
Wang J T.Physiological and molecular mechanisms of brassinosteroids-regulated pesticide degradation in tomato [D]. Hangzhou: Zhejiang University, 2010.
[12] Fariduddin Q, Yusuf M, Hayat S, et al.Effect of 28-homobrassinolide on antioxidant capacity and photosynthesis in Brassica juncea plants exposed to different levels of copper[J]. Environmental and Experimental Botany, 2009, 66(3): 418-424.
[13] 高春娟. 油菜素内酯(BR)对番茄叶片气孔运动的影响及其调控机制[D]. 杭州: 浙江大学, 2012.
Gao C J.Effect of brassinosteroid on stomatal movement and the regulation mechanism in tomato [D]. Hangzhou: Zhejiang University, 2012.
[14] 向芬, 李维, 刘红艳, 等. 茶树叶绿素测定方法的比较研究[J]. 茶叶通讯, 2016, 43(4): 37-40.
Xiang F, Li W, Liu H Y, et al.Comparison methods of chlorophyll extraction in Camellia sinensis[J]. Journal of Tea Communication, 2016, 43(4): 37-40.
[15] 徐萍, 李进, 吕海英, 等. 干旱胁迫下水杨酸对银沙槐子叶表皮气孔开度的影响[J]. 植物生理学报, 2014, 50(4): 510-518.
Xu P, Li J, Lv H Y, et al.Effect of salicylic acid on stomata aperture of epidermis in Ammodendron argenteum cotyled under drought stress[J]. Plant Physiology Journal, 2014, 50(4): 510-518.
[16] Yu X L, Hu S, He C, et al.Chlorophyll metabolism in postharvest tea (Camellia sinensis L.) leaves: variations in color values, chlorophyll derivatives, and gene expression levels under different withering treatments[J]. Journal of Agricultural and Food Chemistry, 2019, 67(38): 10624-10636.
[17] 张东芝. 拟南芥油菜素内酯合成关键酶DWF4的功能研究[D]. 兰州: 兰州大学, 2018.
Zhang D Z.Functional analyses of DWF4, a key enzyme in brassinosteroid biosynthesis pathway in Arabidopsis [D]. Lanzhou: Lanzhou University, 2018.
[18] 李翔, 桑勤勤, 束胜, 等. 外源油菜素内酯对弱光下番茄幼苗光合碳同化关键酶及其基因的影响[J]. 园艺学报, 2016, 43(10): 2012-2020.
Li X, Sang Q Q, Shu S, et al.Effects of epibrassinolide on the activities and gene expression of photosynthetic enzymes in tomato seedlings under low light[J]. Acta Horticulturae Sinica, 2016, 43(10): 2012-2020.
[19] Wu Z J, Tian C, Jiang Q, et al.Selection of suitable reference genes for qRT-PCR normalization during leaf development and hormonal stimuli in tea plant (Camellia sinensis)[J]. Scientific Reports, 2016, 6(1): 19748. doi: 10.1038/srep19748.
[20] Livak K J, Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2-cTmethod[J]. Methods, 2001, 25(4): 402-408.
[21] Beale S I.Green genes gleaned[J]. Trends in Plant Science, 2005, 10(7): 309-312.
[22] Tanaka R, Kobayashi K, Masuda T.Tetrapyrrole metabolism in Arabidopsis thaliana[J]. The Arabidopsis Book, 2011, 9(9): e0145. doi: 10.1199/tab.0145.
[23] Nagata N, Tanaka R, Satoh S, et al.Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of prochlorococcus species[J]. The Plant Cell, 2005, 17(1): 233-240.
[24] 王峰, 陈玉真, 王秀萍, 等. 不同品种茶树叶片功能性状及光合特性的比较[J]. 茶叶科学, 2016, 36(3): 285-292.
Wang F, Chen Y Z, Wang X P, et al.Comparison of leaf functional and photosynthetic characteristics in different tea cultivars[J]. Journal of Tea Science, 2016, 36(3): 285-292.
[25] 李蒙, 束胜, 郭世荣, 等. 24-表油菜素内酯对樱桃番茄光合特性和果实品质的影响[J]. 西北植物学报, 2015, 35(1): 138-145.
Li M, Shu S, Guo S R, et al.Effect of 24-brassinolides on photosynthetic characteristics and fruit quality of cherry tomato[J]. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(1): 138-145.
[26] 胡文海, 黄黎锋, 毛伟华, 等. 油菜素内酯对黄瓜苗期叶片光合机构调节作用的研究[J]. 园艺学报, 2006, 33(4): 762-766.
Hu W H, Huang L F, Mao W H, et al.Role of brassinosteroids in the regulation of photosynthetic apparatus in cucumber leaves[J]. Acta Horticulturae Sinica, 2006, 33(4): 762-766.
[27] 王平荣, 张帆涛, 高家旭, 等. 高等植物叶绿素生物合成的研究进展[J]. 西北植物学报, 2009, 29(3): 629-636.
Wang P R, Zhang F T, Gao J X, et al.An overview of chlorophyll biosynthesis in higher plants[J]. Acta Botanica Boreali-Occidentalia Sinica, 2009, 29(3): 629-636.
[28] Judith S, Botis H, Bernhard G.Overexpression of HEMA1 encoding glutamyl-tRNA reductase[J]. Journal of Plant Physiology, 2011, 168(12): 1372-1379.
[29] 冯晓雪. 油菜素内酯对红地球葡萄生理生化特性和品质的影响[D]. 兰州: 甘肃农业大学, 2014.
Feng X X.Effect of natural brassinolide on physiological, biochemical characteristics and fruit quality of red globe grape [D]. Lanzhou: Gansu Agricultural University, 2014.
[30] 李翔. 外源油菜素内酯对弱光胁迫下番茄幼苗生长及碳同化的影响[D]. 南京: 南京农业大学, 2016.
Li X.The effects of growth and carbon assimilation process of tomato under low light stress by applying exogenous epibrassinolide [D]. Nanjing: Nanjing Agricultural University, 2016.
[31] 岳健敏, 张金池, 尤焱煌, 等. 油菜素内酯对盐胁迫刺槐苗光合作用及叶绿体超微结构的影响[J]. 西北农林科技大学学报(自然科学版), 2017, 45(10): 56-66.
Yue J M, Zhang J C, You Y H, et al.Effects of brassinosteroids on photosynthesis and ultrastructure of chloroplasts in Robinia pseudoacacia seedlings under salt stress[J]. Journal of Northwest A&F University (Natural Science Edition), 2017, 45(10): 56-66.
[32] 李治鑫, 李鑫, 范利超, 等. 外源油菜素内酯对茶树光合特性的影响[J]. 茶叶科学, 2015, 35(6): 543-550.
Li Z X, Li X, Fan L C, et al.Effects of exogenous 24-epibrassinolide on the photosynthetic characteristics of tea plants (Camellia sinensis)[J]. Journal of Tea Science, 2015, 35(6): 543-550.
[33] Çağ S, Gören-Sağlam N, Çıngıl-Barış Ç, et al.The effect of different concentration of epibrassinolide on chlorophyll, protein and anthocyanin content and peroxidase activity in excised red cabbage (Brassica Oleraceae L.) cotyledons[J]. Biotechnology & Biotechnological Equipment, 2007, 21(4): 422-425.
[34] Farquhar G D, Sharkey T D.Stomatal conductance and photosynthesis[J]. Annual Review of Plant Biology, 1982, 33(1): 317-345.
[35] 毕焕改, 王美玲, 姜振升, 等. 亚适温弱光对黄瓜幼苗光合酶活性和基因表达的影响[J]. 应用生态学报, 2011, 22(11): 2894-2900.
Bi H G, Wang M L, Jiang Z S, et al.Impacts of suboptimal temperature and low light intensity on the activities and gene expression of photosynthetic enzymes in cucumber seedling leaves[J]. Chinese Journal of Applied Ecology, 2011, 22(11): 2894-2900.
[36] Jiang D A, Lu Q, Weng X Y, et al.Regulation of rubisco carboxylation activity and photosynthetic rate by rubisco activase during leaf senescence in rice[J]. Journal of Zhejiang University Agriculture and Life Sciences, 2000, 26(2): 119-124.
[37] Raines C A.The Calvin cycle revisited[J]. Photosynthesis Research, 2003, 75(1): 1-10.
[38] Iwaki T, Wadano A, Yokota A, et al.Aldolase: an important enzyme in controlling the ribulose 1,5-bisphosphate regeneration rate in photosynthesis[J]. Plant and Cell Physiology, 1991, 32(7): 1083-1091.
[39] 何晓玲. 外源硒对NaCl胁迫下加工番茄幼苗光合碳同化的影响[D]. 石河子: 石河子大学, 2015.
He X L.Effect of exogenous Se on photosynthetic carbon assimilation in tomato seedlings under NaCl stress [D]. Shihezi: Shihezi University, 2015.
[40] Henkes S, Sonnewald U, Badur R, et al.A small decrease of plastid transketolase activity in antisense tobacco transformants has dramatic effects on photosynthesis and phenylpropanoid metabolism[J]. The Plant Cell, 2001, 13(3): 535-551.
[41] 司建萍. 胡杨油菜素类固醇激素合成酶基因DWF4(PeDWF4)和CPD(PeCPD)在拟南芥生长发育中的作用[D]. 兰州: 兰州大学, 2016.
Si J P.Functional analyses of Populus euphratica brassinosteroid hormone biosynthesis enzyme genes DWF4 (PeDWF4) and CPD (PeCPD) in the regulation of growth and development of Arabidopsis thaliana [D]. Lanzhou: Lanzhou University, 2016.
[42] Noguchi T, Fujioka S, Takatsuto S, et al.Arabidopsis det2 is defective in the conversion of (24R)-24-methylcholest-4-en-
3-one to(24R)-24-methyl-5α-cholestan-3-one in brassinosteroid biosynthesis[J]. Plant Physiology, 1999, 120(3): 833-839.
[43] Ohnishi T, Szatmari A M, Watanabe B, et al.C-23 hydroxylation by Arabidopsis CYP90C1 and CYP90D1 reveals a novel shortcut in brassinosteroid biosynthesis[J]. The Plant Cell, 2006, 18(11): 3275-3288.
[44] Iqbal M, Ashraf M, Shafiq-ur-Rehman, et al. Does polyamine seed pretreatment modulate growth and levels of some plant growth regulators in hexaploidy wheat (Triticum aestivum L.) plants under salt stress?[J]. Botanical Studies, 2006, 47(3): 239-250.
[45] 孙超, 黎家. 油菜素甾醇类激素的生物合成、代谢及信号转导[J]. 植物生理学报, 2017, 53(3): 291-307.
Sun C, Li J.Biosynthesis, catabolism, and signal transduction of brassinosteroids[J]. Plant Physiology Journal, 2017, 53(3): 291-307.
Outlines

/